57
Views
129
CrossRef citations to date
0
Altmetric
Gene Expression

Regulation of Sex-Specific Selection of fruitless 5′ Splice Sites by transformerand transformer-2

, &
Pages 450-458 | Received 29 Aug 1997, Accepted 24 Oct 1997, Published online: 28 Mar 2023

REFERENCES

  • Aebi, M., H. Hornig, and C. Weissman 1987. 5′ cleavage site in eukaryotic pre-mRNA splicing is determined by the overall 5′ splice region, not by the conserved 5′ GU. Cell 50: 237–246.
  • Amrein, H., M. Gorman, and R. Nöthiger 1988. The sex-determining gene tra-2 of Drosophila encodes a putative RNA binding protein. Cell 55: 1025–1035.
  • Amrein, H., M. L. Hedley, and T. Maniatis 1994. The role of specific protein-RNA and protein-protein interactions in positive and negative control of pre-mRNA splicing by transformer 2. Cell 76: 735–746.
  • Ayane, M., U. Preuss, G. Köhler, and P. J. Nielsen 1991. A differentially expressed murine RNA encoding a protein with similarities to two types of nucleic acid binding proteins. Nucleic Acids Res. 19: 1273–1278.
  • Baker, B. S. 1989. Sex in flies: the splice of life. Nature 340: 521–524.
  • Banfi, S., G. Borsani, E. Rossi, L. Bernard, A. Guffanti, F. Rubboli, A. Marchitiello, S. Giglio, E. Coluccia, M. Zolla, O. Zuffardi, and A. Ballabio 1996. Identification and mapping of human cDNAs homologous to Drosophila mutant genes through EST database searching. Nature Genet. 13: 167–174.
  • Bashaw, G. J., and B. S. Baker 1995. The msl-2 dosage compensation gene of Drosophila encodes a putative DNA-binding protein whose expression is sex specifically regulated by Sex-lethal. Development 121: 3245–3258.
  • Bashaw, G. J., and B. S. Baker 1997. The regulation of the Drosophila msl-2 gene reveals a function for Sex-lethal in translational control. Cell 89: 789–798.
  • Bell, L. R., J. I. Horabin, P. Schedl, and T. W. Cline 1991. Positive autoregulation of Sex-lethal by alternative splicing maintains the female determined state in Drosophila. Cell 65: 229–239.
  • Boelens, W. C., E. J. R. Jansen, W. J. van Venrooij, R. Stripecke, I. W. Mattaj, and S. I. Gunderson 1993. The human U1 snRNP-specific U1A protein inhibits polyadenylation of its own pre-mRNA. Cell 72: 881–892.
  • Boggs, R. T., P. Gregor, S. Idriss, J. M. Belote, and M. McKeown 1987. Regulation of sexual differentiation in D. melanogaster via alternative splicing of RNA from the transformer gene. Cell 50: 739–747.
  • Burd, C. G., and G. Dreyfuss 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265: 615–621.
  • Burtis, K. C. Personal communication.
  • Burtis, K. C., and B. S. Baker 1989. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 56: 997–1010.
  • Caputi, M., G. Casari, S. Guenzi, R. Tagliabue, A. Sidoli, C. A. Melo, and F. E. Baralle 1994. A novel bipartite splicing enhancer modulates the differential processing of the human fibronectin EDA exon. Nucleic Acids Res. 22: 1018–1022.
  • Cavaloc, Y., M. Popielarz, J.-P. Fuchs, R. Gattoni, and J. Stévenin 1994. Characterization and cloning of the human splicing factor 9G8: a novel 35kDa factor of the serine/arginine protein family. EMBO J. 13: 2639–2649.
  • Champlin, D. T., M. Frasch, H. Saumweber, and J. T. Lis 1991. Characterization of a Drosophila protein associated with boundaries of transcriptionally active chromatin. Genes Dev. 5: 1611–1621.
  • Dauwalder, B., F. Amaya-Manzanares, and W. Mattox 1996. A human homologue of the Drosophila sex determination factor transformer-2 has conserved splicing regulatory functions. Proc. Natl. Acad. Sci. USA 93: 9004–9009.
  • Diamond, R. H., K. Du, V. M. Lee, K. L. Mohn, B. A. Haber, D. S. Tewari, and R. Taub 1993. Novel delayed-early and highly insulin-induced growth response genes. Identification of HRS, a potential regulator of alternative pre-mRNA splicing. J. Biol. Chem. 268: 15185–15192.
  • Dominski, Z., and R. Kole 1994. Identification of exon sequences involved in splice site selection. J. Biol. Chem. 269: 23590–23596.
  • Eperon, I. C., D. C. Ireland, R. A. Smith, A. Mayeda, and A. R. Krainer 1993. Pathways for selection of 5′ splice sites by U1 snRNPs and SF2/ASF. EMBO J. 12: 3607–3617.
  • Fu, X.-D., and T. Maniatis 1992. Isolation of a complementary DNA that encodes the mammalian splicing factor SC35. Science 256: 535–538.
  • Ge, H., and J. L. Manley 1990. A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 62: 25–34.
  • Ge, H., P. Zuo, and J. L. Manley 1991. Primary structure of the human splicing factor ASF reveals similarities with Drosophila regulators. Cell 66: 373–382.
  • Gontarek, R. R., and D. Derse 1996. Interactions among SR proteins, an exonic splicing enhancer, and a lentivirus Rev protein regulate alternative splicing. Mol. Cell. Biol. 16: 2325–2331.
  • Goralski, T. J., J. E. Edstrom, and B. S. Baker 1989. The sex determination locus transformer-2 of Drosophila encodes a polypeptide with similarity to RNA binding proteins. Cell 56: 1011–1018.
  • Hazelrigg, T., and C. Tu 1994. Sex-specific processing of the Drosophilia exuperantia transcript is regulated in male germ cells by the tra-2 gene. Proc. Natl. Acad. Sci. USA 91: 10752–10756.
  • Hedley, M. L., and T. Maniatis 1991. Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to a tra-2 protein in vitro. Cell 65: 579–586.
  • Heinrichs, V., and B. S. Baker 1995. The Drosophila SR protein RBP1 contributes to the regulation of doublesex alternative splicing by recognizing RBP1 RNA target sequences. EMBO J. 14: 3987–4000.
  • Heinrichs, V., and B. S. Baker 1997. In vivo analysis of the functional domains of the Drosophila splicing regulator RBP1. Proc. Natl. Acad. Sci. USA 94: 115–120.
  • Hoshijima, K., K. Inoue, I. Higuchi, H. Sakamoto, and Y. Shimura 1991. Control of doublesex alternative splicing by transformer and transformer-2 in Drosophila. Science 252: 833–836.
  • Humphrey, M. B., J. Bryan, T. A. Cooper, and S. M. Berget 1995. A 32-nucleotide exon-splicing enhancer regulates usage of competing 5′ splice sites in a differential internal exon. Mol. Cell. Biol. 15: 3979–3988.
  • Inoue, K., K. Hoshijima, I. Higuchi, H. Sakamoto, and Y. Shimura 1992. Binding of the Drosophila transformer and transformer-2 proteins to the regulatory elements of doublesex primary transcript for sex-specific RNA processing. Proc. Natl. Acad. Sci. USA 89: 8092–8096.
  • Ito, H., K. Fujitani, K. Usui, K. Shimizu-Nishikawa, S. Tanaka, and D. Yamamoto 1996. Sexual orientation in Drosophila is altered by the satori mutation in the sex-determination gene fruitless that encodes a zinc finger protein with a BTB domain. Proc. Natl. Acad. Sci. USA 93: 9687–9692.
  • Kelley, R. L., I. Solovyeva, L. M. Lyman, R. Richman, V. Solovyev, and M. I. Kuroda 1995. Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 81: 867–877.
  • Kelley, R. L., J. Wang, L. Bell, and M. I. Kuroda 1997. Sex-lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature 387: 195–199.
  • Kim, Y.-J., P. Zuo, J. L. Manley, and B. S. Baker 1992. The Drosophila RNA binding protein RBP1 is localized to transcriptionally active sites of chromosomes and shows a functional similarity to human splicing factor ASF/SF2. Genes Dev. 6: 2569–2579.
  • Kohtz, J. D., S. F. Jamison, C. L. Will, P. Zuo, R. Lührmann, M. A. Garcia-Blanco, and J. L. Manley 1994. Protein-protein interactions and 5′ splice site recognition in mammalian mRNA precursors. Nature 368: 119–124.
  • Krainer, A. R., G. C. Conway, and D. Kozak 1990. The essential pre-mRNA splicing factor SF2 influences 5′ splice site selection by activating proximal sites. Cell 62: 35–42.
  • Krainer, A. R., A. Mayeda, D. Kozak, and G. Binns 1991. Functional expression of cloned human splicing factor SF2: homology to RNA-binding proteins, U1 70K, and Drosophila splicing regulators. Cell 66: 383–394.
  • Lavigueur, A., H. La Branche, A. R. Kornblihtt, and B. Chabot 1993. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev. 7: 2405–2417.
  • Li, H., and P. M. Bingham 1991. Arginine/serine-rich domains of the su(wa) and tra RNA processing regulators target proteins to a subnuclear compartment implicated in splicing. Cell 67: 335–342.
  • Lutz, C. S., and J. C. Alwine 1994. Direct interaction of the U1 snRNP-A protein with the upstream efficiency element of the SV40 late polyadenylation signal. Genes Dev. 8: 576–586.
  • Lynch, K. W., and T. Maniatis 1996. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev. 10: 2089–2101.
  • Matsuo, N., S. Ogawa, Y. Imai, T. Takagi, M. Tohyama, D. Stern, and A. Wanaka 1995. Cloning of a novel RNA binding polypeptide (RA301) induced by hypoxia/reoxygenation. J. Biol. Chem. 270: 28216–28222.
  • Mattox, W., and B. S. Baker 1991. Autoregulation of the splicing of transcripts from the transformer-2 gene of Drosophila. Genes Dev. 5: 786–796.
  • Min, H., R. Chan, and D. L. Black 1995. The generally expressed hnRNP F is involved in a neural-specific pre-mRNA splicing event. Genes Dev. 9: 2659–2671.
  • Mount, S. M., C. Burks, G. Hertz, G. D. Stormo, O. White, and C. Fields 1992. Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res. 20: 4255–4262.
  • Nagoshi, R., and B. S. Baker 1990. Regulation of sex-specific RNA splicing at the Drosophila doublesex gene: cis-acting mutations in exon sequences alter sex-specific RNA splicing patterns. Genes Dev. 4: 89–97.
  • Nagoshi, R. N., M. McKeown, K. C. Burtis, J. M. Belote, and B. S. Baker 1988. The control of alternative splicing at genes regulating sexual differentiation in D. melanogaster. Cell 53: 229–236.
  • Peng, X., and S. M. Mount 1995. Genetic enhancement of RNA-processing defects by a dominant mutation in B52, the Drosophila gene for an SR protein splicing factor. Mol. Cell. Biol. 15: 6273–6282.
  • Ramchatesingh, J., A. M. Zahler, K. M. Neugebauer, M. B. Roth, and T. A. Cooper 1995. A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol. Cell. Biol. 15: 4898–4907.
  • Roth, M. B., A. M. Zahler, and J. A. Stolk 1991. A conserved family of nuclear phosphoproteins localized to sites of polymerase II transcription. J. Cell Biol. 115: 587–596.
  • Ryner, L. C., and B. S. Baker 1991. Regulation of doublesex pre-mRNA processing occurs by 3′-splice site activation. Genes Dev. 5: 2071–2085.
  • Ryner, L. C., S. F. Goodwin, D. H. Castrillon, A. Anand, A. Villela, B. S. Baker, J. C. Hall, B. J. Taylor, and S. A. Wasserman 1996. Control of male sexual behaviour and sexual orientation in Drosophila by the fruitless gene. Cell 87: 1079–1089.
  • Screaton, G. R., J. F. Cáceres, A. Mayeda, M. V. Bell, M. Plebanski, D. G. Jackson, J. I. Bell, and A. R. Krainer 1995. Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J. 14: 4336–4349.
  • Segade, F., B. Hurle, E. Claudio, S. Ramos, and P. S. Lazo 1996. Molecular cloning of a mouse homologue for the Drosophila splicing regulator Tra-2. FEBS Lett. 387: 152–156.
  • Siebel, C. W., R. Kanaar, and D. C. Rio 1994. Regulation of tissue-specific P-element pre-mRNA splicing requires the RNA-binding protein PSI. Genes Dev. 8: 1713–1725.
  • Sosnowski, B. A., J. M. Belote, and M. McKeown 1989. Sex-specific alternative splicing of RNA from the transformer gene results from sequence-dependent splice site blockage. Cell 58: 449–459.
  • Staknis, D., and R. Reed 1994. SR proteins promote the first specific recognition of pre-mRNA and are present with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol. Cell. Biol. 14: 7670–7682.
  • Sun, Q., A. Mayeda, R. K. Hampson, A. R. Krainer, and F. Rottman 1993. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev. 7: 2598–2608.
  • Tacke, R., and J. L. Manley 1995. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 14: 3540–3551.
  • Tanaka, K., A. Watakabe, and Y. Shimura 1994. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol. Cell. Biol. 14: 1347–1354.
  • Taylor, B. J. 1992. Differentiation of a male-specific muscle in Drosophila melanogaster does not require the sex-determining genes doublesex or intersex. Genetics 132: 179–191.
  • Theissen, H., M. Etzerodt, R. Reuter, C. Schneider, F. Lottspeich, P. Argos, R. Lührmann, and L. Philipson 1986. Cloning of the human cDNA for the U1 RNA-associated 70K protein. EMBO J. 5: 3209–3217.
  • Tian, M., and T. Maniatis 1994. A splicing enhancer exhibits both constitutive and regulated activities. Genes Dev. 8: 1703–1712.
  • van Oers, C. C. M., G. J. Adema, H. Zandberg, T. Moen, and P. D. Baas 1994. Two different sequence elements within exon 4 are necessary for calcitonin-specific splicing of the human calcitonin/calcitonin gene-related peptide I pre-mRNA. Mol. Cell. Biol. 14: 951–960.
  • Vellard, M., A. Sureau, J. Soret, C. Martinerie, and B. Perbal 1992. A potential splicing factor is encoded by the opposite strand of the trans-spliced c-myb exon. Proc. Natl. Acad. Sci. USA 89: 2511–2515.
  • Wu, J. Y., and T. Maniatis 1993. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75: 1061–1070.
  • Xu, R., J. Teng, and T. A. Cooper 1993. The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol. Cell. Biol. 13: 3660–3674.
  • Yeakley, J. M., F. Hedjran, J.-P. Morfin, N. Merillat, M. G. Rosenfeld, and R. B. Emeson 1993. Control of calcitonin/calcitonin gene-related peptide pre-mRNA processing by constitutive intron and exon elements. Mol. Cell. Biol. 13: 5999–6011.
  • Zahler, A. M., K. M. Neugebauer, W. S. Lane, and M. B. Roth 1993. Distinct functions of SR proteins in alternative pre-mRNA splicing. Science 260: 219–222.
  • Zahler, A. M., K. M. Neugebauer, J. A. Stolk, and M. B. Roth 1993. Human SR proteins and isolation of a cDNA encoding SRp75. Mol. Cell. Biol. 13: 4023–4028.
  • Zahler, A. M., L. S. William, J. A. Stolk, and M. B. Roth 1992. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6: 837–847.
  • Zamore, P. D., J. G. Patton, and M. R. Green 1992. Cloning and domain structure of the mammalian splicing factor U2AF. Nature 355: 609–614.
  • Zhou, S., Y. Yang, M. J. Scott, A. Pannuti, K. C. Fehr, A. Eisen, E. V. Koonin, D. L. Fouts, R. Wrightsman, J. E. Manning, and J. C. Lucchesi 1995. Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster. EMBO J. 14: 2884–2895.
  • Zhuang, Y., and A. M. Weiner 1986. A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell 46: 827–835.
  • Zuo, P., and J. L. Manley 1994. The human splicing factor ASF/SF2 can specifically recognize pre-mRNA 5′ splice sites. Proc. Natl. Acad. Sci. USA 91: 3363–3367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.