4
Views
30
CrossRef citations to date
0
Altmetric
Gene Expression

cDNA Cloning and Characterization of the Human U3 Small Nucleolar Ribonucleoprotein Complex-Associated 55-Kilodalton Protein

, , &
Pages 488-498 | Received 11 Jul 1997, Accepted 13 Oct 1997, Published online: 28 Mar 2023

REFERENCES

  • Balakin, A. G., L. Smith, and M. J. Fournier 1996. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86: 823–834.
  • Baserga, S. J., X. D. Yang, and J. A. Steitz 1991. An intact box C sequence in the U3 snRNA is required for binding of fibrillarin, the protein common to the major family of nucleolar snRNPs. EMBO J. 10: 2645–2651.
  • Beltrame, M., and D. Tollervey 1992. Identification and functional analysis of two U3 binding sites on yeast pre-ribosomal RNA. EMBO J. 11: 1531–1542.
  • Bjorn, S. P., A. Soltyk, J. D. Beggs, and J. D. Friesen 1989. PRP4 (RNA4) from Saccharomyces cerevisiae: its gene product is associated with the U4/U6 small nuclear ribonucleoprotein particle. Mol. Cell. Biol. 9: 3698–3709.
  • Bohmann, K., J. Ferreira, N. Santama, K. Weis, and A. I. Lamond 1995. Molecular analysis of the coiled body. J. Cell Sci. Suppl. 19: 107–113.
  • Bordonne, R., J. Banroques, J. Abelson, and C. Guthrie 1990. Domains of yeast U4 spliceosomal RNA required for PRP4 protein binding, snRNP-snRNP interactions, and pre-mRNA splicing in vivo. Genes Dev. 4: 1185–1196.
  • Carmo-Fonseca, M., J. Ferreira, and A. I. Lamond 1993. Assembly of snRNP-containing coiled bodies is regulated in interphase and mitosis—evidence that the coiled body is a kinetic nuclear structure. J. Cell Biol. 120: 841–852.
  • Cavaille, J., M. Nicoloso, and J. P. Bachellerie 1996. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383: 732–735.
  • Cormack, B. P., R. H. Valdivia, and S. Falkow 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173: 33–38.
  • Dalrymple, M. A., S. Petersen-Bjorn, J. D. Friesen, and J. D. Beggs 1989. The product of the PRP4 gene of S. cerevisiae shows homology to beta subunits of G proteins. Cell 58: 811–812.
  • Duronio, R. J., J. I. Gordon, and M. S. Boguski 1992. Comparative analysis of the beta transducin family with identification of several new members including PWP1, a nonessential gene of Saccharomyces cerevisiae that is divergently transcribed from NMT1. Proteins 13: 41–56.
  • Eichler, D. C., and N. Craig 1994. Processing of eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 49: 197–239.
  • Enright, C. A., E. S. Maxwell, and B. Sollner-Webb 1996. 5′ETS rRNA processing facilitated by four small RNAs: U14, E3, U17, and U3. RNA 2: 1094–1099.
  • Fong, H. K., J. B. Hurley, R. S. Hopkins, R. Miake-Lye, M. S. Johnson, R. F. Doolittle, and M. I. Simon 1986. Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs. Proc. Natl. Acad. Sci. USA 83: 2162–2166.
  • Ganot, P., M. L. Bortolin, and T. Kiss 1997. Site specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89: 799–809.
  • Girard, J. P., C. Bagni, M. Caizergues-Ferrer, F. Amalric, and B. Lapeyre 1994. Identification of a segment of the small nucleolar ribonucleoprotein-associated protein GAR1 that is sufficient for nucleolar accumulation. J. Biol. Chem. 269: 18499–18506.
  • Habets, W. J., M. H. Hoet, B. A. De Jong, A. Van der Kemp, and W. J. van Venrooij 1989. Mapping of B cell epitopes on small nuclear ribonucleoproteins that react with human autoantibodies as well as with experimentally-induced mouse monoclonal antibodies. J. Immunol. 143: 2560–2566.
  • Hughes, J. M. 1996. Functional base-pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA. J. Mol. Biol. 259: 645–654.
  • Hughes, J. M., and M. J. Ares 1991. Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA. EMBO J. 10: 4231–4239.
  • Hughes, J. M., D. A. Konings, and G. Cesareni 1987. The yeast homologue of U3 snRNA. EMBO J. 6: 2145–2155.
  • Jansen, R., D. Tollervey, and E. C. Hurt 1993. A U3 snoRNP protein with homology to splicing factor PRP4 and G beta domains is required for ribosomal RNA processing. EMBO J. 12: 2549–2558.
  • Jimenez-Garcia, L. F., M. L. Segura Valdez, R. L. Ochs, L. I. Rothblum, R. Hannan, and D. L. Spector 1994. Nucleologenesis: U3 snRNA-containing prenucleolar bodies move to sites of active pre-rRNA transcription after mitosis. Mol. Biol. Cell 5: 955–966.
  • Kass, S., K. Tyc, J. A. Steitz, and B. Sollner-Webb 1990. The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 60: 897–908.
  • Kiss-Laszlo, Z., Y. Henry, J. P. Bachellerie, M. Caizergues-Ferrer, and T. Kiss 1996. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85: 1077–1088.
  • Kreis, T. E. 1986. Microinjected antibodies against the cytoplasmic domain of vesicular stomatitis virus glycoprotein block its transport to the cell surface. EMBO J. 5: 931–941.
  • Lübben, B., C. Marshallsay, N. Rottmann, and R. Lührmann 1993. Isolation of U3 snoRNP from CHO cells: a novel 55 kDa protein binds to the central part of U3 snoRNA. Nucleic Acids Res. 21: 5377–5385.
  • Lygerou, Z., C. Allmang, D. Tollervey, and B. Seraphin 1996. Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science 272: 268–270.
  • Lygerou, Z., H. Pluk, W. J. van Venrooij, and B. Seraphin 1996. hPop1: an autoantigenic protein subunit shared by the human RNase P and RNase MRP ribonucleoproteins. EMBO J. 15: 5936–5948.
  • Matera, A. G., K. T. Tycowski, J. A. Steitz, and D. C. Ward 1994. Organization of small nucleolar ribonucleoproteins (snoRNPs) by fluorescence in situ hybridization and immunocytochemistry. Mol. Biol. Cell 5: 1289–1299.
  • Maxwell, E. S., and M. J. Fournier 1995. The small nucleolar RNAs. Annu. Rev. Biochem. 64: 897–934.
  • Myslinski, E., V. Segault, and C. Branlant 1990. An intron in the genes for U3 small nucleolar RNAs of the yeast Saccharomyces cerevisiae. Science 247: 1213–1216.
  • Neer, E. J., C. J. Schmidt, R. Nambudripad, and T. F. Smith 1994. The ancient regulatory-protein family of WD-repeat proteins. Nature 371: 297–300.
  • Ni, J. W., A. L. Tien, and M. J. Fournier 1997. Small nucleolar RNAs direct site specific synthesis of pseudouridine in ribosomal RNA. Cell 89: 565–573.
  • Nicoloso, M., L. H. Qu, B. Michot, and J. P. Bachellerie 1996. Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2′-O-ribose methylation of rRNAs. J. Mol. Biol. 260: 178–195.
  • Parker, K. A., and J. A. Steitz 1987. Structural analysis of the human U3 ribonucleoprotein particle reveals a conserved sequence available for base pairing with pre-rRNA. Mol. Cell. Biol. 7: 2899–2913.
  • Raska, I., L. E. Andrade, R. L. Ochs, E. K. Chan, C. M. Chang, G. Roos, and E. M. Tan 1991. Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp. Cell Res. 195: 27–37.
  • Reimer, G., K. M. Pollard, C. A. Penning, R. L. Ochs, M. A. Lischwe, H. Busch, and E. M. Tan 1987. Monoclonal autoantibody from a (New Zealand black × New Zealand white)F1 mouse and some human scleroderma sera target an Mr 34,000 nucleolar protein of the U3 RNP particle. Arthritis Rheum. 30: 793–800.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulson 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.
  • Scherly, D., W. Boelens, W. J. van Venrooij, N. A. Dathan, J. Hamm, and I. W. Mattaj 1989. Identification of the RNA binding segment of human U1 A protein and definition of its binding site on U1 snRNA. EMBO J. 8: 4163–4170.
  • Schmidt-Zachmann, M. S., and E. A. Nigg 1993. Protein localization to the nucleolus: a search for targeting domains in nucleoli. J. Cell Sci. 105: 799–806.
  • Sillekens, P. T., W. J. Habets, R. P. Beijer, and W. J. van Venrooij 1987. cDNA cloning of the human U1 snRNA-associated A protein: extensive homology between U1 and U2 snRNP-specific proteins. EMBO J. 6: 3841–3848.
  • Takagaki, Y., and J. L. Manley 1992. A human polyadenylation factor is a G protein beta-subunit homologue. J. Biol. Chem. 267: 23471–23474.
  • Terns, M. P., and J. E. Dahlberg 1994. Retention and 5′ cap trimethylation of U3 snRNA in the nucleus. Science 264: 959–961.
  • Terns, M. P., C. Grimm, E. Lund, and J. E. Dahlberg 1995. A common maturation pathway for small nucleolar RNAs. EMBO J. 14: 4860–4871.
  • Tollervey, D. 1996. Trans acting factors in ribosome synthesis. Exp. Cell Res. 229: 226–232.
  • Tyc, K., and J. A. Steitz 1989. U3, U8 and U13 comprise a new class of mammalian snRNPs localized in the cell nucleolus. EMBO J. 8: 3113–3119.
  • Tycowski, K. T., M. D. Shu, and J. A. Steitz 1993. A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3. Genes Dev. 7: 1176–1190.
  • Tycowski, K. T., C. M. Smith, M. D. Shu, and J. A. Steitz 1996. A small nucleolar RNA requirement for site-specific ribose methylation of rRNA in Xenopus. Proc. Natl. Acad. Sci. USA 93: 14480–14485.
  • van der Voorn, L., and H. L. Ploegh 1992. The WD-40 repeat. FEBS Lett. 307: 131–134.
  • van Gelder, C. W., J. P. Thijssen, E. C. Klaassen, C. Sturchler, A. Krol, W. J. van Venrooij, and G. J. Pruijn 1994. Common structural features of the Ro RNP associated hY1 and hY5 RNAs. Nucleic Acids Res. 22: 2498–2506.
  • Verheijen, R., A. Wiik, B. A. De Jong, M. Hoier-Madsen, S. Ullman, P. Halberg, and W. J. van Venrooij 1994. Screening for autoantibodies to the nucleolar U3- and Th(7-2) ribonucleoproteins in patients’ sera using antisense riboprobes. J. Immunol. Methods 169: 173–182.
  • Yan, C., and T. Melese 1993. Multiple regions of NSR1 are sufficient for accumulation of a fusion protein within the nucleolus. J. Cell Biol. 123: 1081–1091.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.