84
Views
18
CrossRef citations to date
0
Altmetric
Gene Expression

I-PpoI, the Endonuclease Encoded by the Group I Intron PpLSU3, Is Expressed from an RNA Polymerase I Transcript

&
Pages 5809-5817 | Published online: 28 Mar 2023

REFERENCES

  • Adler, P. N., and C. E. Holt 1974. Genetic analysis in the Colonia strain of Physarum polycephalum: heterothallic strains that mate with and are partially isogenic to the Colonia strain. Genetics 78: 1051–1062.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl 1990. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y.
  • Belfort, M., and P. S. Perlman 1995. Mechanisms of intron mobility. J. Biol. Chem. 270: 30237–30234.
  • Bell-Pedersen, D., S. Quirk, J. Clyman, and M. Belfort 1990. Intron mobility in phage T4 is dependent upon a distinctive class of endonucleases and independent of DNA sequences encoding the intron core: mechanistic and evolutionary implications. Nucleic Acids Res. 18: 3763–3770.
  • Cech, T. R. 1990. Self-splicing of group I introns. Annu. Rev. Biochem. 59: 543–568.
  • Decatur, W. A., C. Einvik, S. Johansen, and V. M. Vogt 1995. Two group I intron ribozymes with different functions in a nuclear rDNA intron. EMBO J. 14: 4558–4568.
  • Dujon, B., M. Belfort, R. Butow, C. Jacq, C. Lemieux, P. S. Perlman, and V. M. Vogt 1989. Mobile introns definition of terms and recommended nomenclature. Gene 82: 115–118.
  • Einvik, C., W. A. Decatur, T. M. Embley, V. M. Vogt, and S. Johansen 1997. Naegleria nucleolar introns contain two group I ribozymes with different functions in RNA splicing and processing. RNA 3: 710–720.
  • Ellison, E. L., and V. M. Vogt 1993. Interaction of the intron-encoded mobility endonuclease I-PpoI with its target site. Mol. Cell. Biol. 13: 7531–7539.
  • Ellison, E. L. 1994. Ph.D. thesis. Cornell University, Ithaca, N.Y.
  • Fleischer, S., and I. Grummt 1983. Expression of an mRNA gene under the control of an RNA polymerase I promoter. EMBO J. 2: 2319–2322.
  • Gallie, D. R. 1991. The cap and poly(A) tail function synergistically to regulate mRNA translation efficiency. Genes Dev. 5: 2108–2116.
  • Good, L., S. Abou-Elela, and R. N. Nazar 1994. Tetrahymena ribozyme disrupts rRNA processing in yeast. J. Biol. Chem. 269: 22169–22172.
  • Gott, J. M., A. Zeeh, D. Bell-Pedersen, K. Ehrenman, M. Belfort, and D. A. Shub 1988. Genes within genes: independent expression of phage T4 intron open reading frames and the genes in which they reside. Genes Dev. 2: 1791–1799.
  • Grummt, I., and J. A. Skinner 1985. Efficient transcription of a protein-coding gene from the RNA polymerase I promoter in transfected cells. Proc. Natl. Acad. Sci. USA 82: 722–726.
  • Guo, W.-W., J. V. Moran, P. W. Hoffman, R. M. Henke, R. A. Butow, and P. S. Perlman 1995. The mobile group I intron 3α of the yeast mitochondrial COXI gene encodes a 35-KDa processed protein that is an endonuclease but not a maturase. J. Biol. Chem. 270: 15563–15570.
  • Hurt, E. C., A. McDowall, and T. Schimmang 1988. Nucleolar and nuclear envelope proteins of the yeast Saccharomyces cerevisiae. Eur. J. Cell Biol. 46: 554–563.
  • Jacobson, A. 1996. Poly(A) metabolism and translation: the closed-loop model, p. 451–480. In: Hershey, J. W. B., M. B. Mathews, and N. Sonenberg. Translational control., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Jakubczak, J. L., M. K. Zenni, R. C. Woodruff, and T. H. Eickbush 1992. Turnover of R1 and R2 type II retrotransposable elements in the ribosomal DNA of Drosophila melanogaster. Genetics 131: 129–142.
  • Johansen, S., T. M. Embley, and N. P. Willassen 1993. A family of nuclear homing endonuclease. Nucleic Acids Res. 21: 4405.
  • Johansen, S., and V. M. Vogt 1994. An intron in the nuclear ribosomal DNA of Didymium iridis codes for a group I ribozyme and a novel ribozyme that cooperate in self-splicing. Cell 76: 725–734.
  • Johansen, S., M. Elde, A. Vader, P. Haugen, K. Haugli, and F. Haugli 1997. In vivo mobility of a group I twintron in nuclear ribosomal DNA of the myxomycete Didymium iridis. Mol. Microbiol. 24: 737–745.
  • Liang, W.-Q., and M. J. Fournier 1997. Synthesis of functional eukaryotic ribosomal RNAs in trans: development of a novel in vivo rDNA system for dissecting ribosome biogenesis. Proc. Natl. Acad. Sci. USA 94: 2864–2868.
  • Lo, H.-J., H.-K. Huang, and T. F. Donahue 1998. RNA polymerase I-promoted HIS4 expression yields uncapped, polyadenylated mRNA that is unstable and inefficiently translated in Saccharomyces cerevisiae. Mol. Cell. Biol. 18: 665–675.
  • Lopata, M. A., D. W. Cleveland, and B. Sollner-Webb 1986. RNA polymerase specificity of mRNA production and enhancer action. Proc. Natl. Acad. Sci. USA 83: 6677–6681.
  • Marzluff, W. F. 1992. Histone 3′ ends: essential and regulatory functions. Gene Expr. 2: 93–97.
  • Moran, J. V., C. M. Wernette, K. L. Mecklenburg, R. A. Butow, and P. S. Perlman 1992. Intron 5a of the COXI gene of yeast mitochondrial DNA is a mobile group I intron. Nucleic Acids Res. 20: 4069–4076.
  • Murphy, W. J., K. P. Watkins, and N. Agablan 1986. Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: evidence for trans splicing. Cell 47: 517–525.
  • Muscarella, D. E., and V. M. Vogt 1989. A mobile group I intron in the nuclear rDNA of Physarum polycephalum. Cell 56: 443–454.
  • Muscarella, D. E., and V. M. Vogt 1993. A mobile group I intron from Physarum polycephalum can insert itself and induce point mutations in the nuclear ribosomal DNA of Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 1023–1033.
  • Nogi, Y., R. Yano, and M. Nomura 1991. Synthesis of large rRNA by RNA polymerase II in mutants of Saccharomyces cerevisiae defective in RNA polymerase I. Proc. Natl. Acad. Sci. USA 88: 3962–3966.
  • Nogi, Y., L. Vu, and M. Nomura 1991. An approach for isolation of mutants defective in 35S ribosomal RNA synthesis in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88: 7026–7030.
  • Raue, H. A., and R. J. Planta 1995. The pathway to maturity: processing of ribosomal RNA in Saccharomyces cerevisiae. Gene Expr. 5: 71–77.
  • Richard, G., and B. Dujon 1997. Association of transcripts from a group-I intron containing gene with high sedimentation coefficient particles. Curr. Genet. 32: 175–181.
  • Rocheleau, G. A., and S. Woodson 1994. Requirements for self-splicing of a group I intron from Physarum polycephalum. Nucleic Acids Res. 22: 4315–4320.
  • Rocheleau, G. A., and S. A. Woodson 1995. Enhanced self-splicing of Physarum polycephalum intron 3 by a second group I intron. RNA 1: 183–193.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60: 237–243.
  • Ruoff, B., S. Johansen, and V. M. Vogt 1992. Characterization of the self-splicing products of a mobile intron from the nuclear rDNA of Physarum polycephalum. Nucleic Acids Res. 20: 5899–5906.
  • Sachs, A. B., P. Sarnow, and M. W. Hentze 1997. Starting at the beginning, middle, and the end: translation initiation in eukaryotes. Cell 89: 831–838.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Seraphin, B., G. Faye, D. Hatat, and C. Jacq 1992. The yeast mitochondrial intron aI5α: associated endonuclease activity and in vivo mobility. Gene 113: 1–8.
  • Sherman, F., G. R. Fink, and J. B. Hicks 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sikorski, R. S., and P. Hieter 1989. A system for shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Smale, S. T., and R. Tjian 1985. Transcription of herpes simplex virus tk sequence under the control of wild-type and mutant human RNA polymerase I promoters. Mol. Cell. Biol. 5: 352–362.
  • Sun, J., D. R. Pilch, and W. E. Marzluff 1992. The histone mRNA 3′ end is required for localization of histone mRNA to polyribosomes. Nucleic Acids Res. 20: 6057–6066.
  • Sutton, R. E., and J. C. Boothroyd 1986. Evidence for trans splicing trypanosomes. Cell 47: 527–535.
  • Vallette, F., E. Mege, A. Reiss, and M. Adesnik 1988. Construction of mutant and chimeric genes using the polymerase chain reaction. Nucleic Acids Res. 17: 723–726.
  • Wang, S., K. S. Browing, and W. A. Miller 1997. A viral sequence in the 3′-untranslated region mimics a 5′ cap in facilitating translation of uncapped mRNA. EMBO J. 16: 4107–4116.
  • Warner, J. R. 1971. The assembly of ribosome in yeast. J. Biol. Chem. 246: 447–454.
  • Wenzlau, J. M., R. J. Saldanha, R. A. Butow, and P. S. Perlman 1989. A latent intron-encoded maturase is also an endonuclease needed for intron mobility. Cell 56: 421–430.
  • Wittekind, M., J. Dodd, L. Vu, J. M. Kolb, J.-M. Buhler, A. Sentenac, and M. Nomura 1988. Isolation and characterization of temperature-sensitive mutations in RPA190, the gene encoding the largest subunit of RNA polymerase I from Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 3997–4008.
  • Wittmayer, P. K., J. L. McKenzie, and R. T. Raines 1998. Degenerate DNA recognition by I-PpoI endonuclease. Gene 206: 11–21.
  • Woodson, S. A. 1992. Exon sequences distant from the splice junction are required for efficient self-splicing of the Tetrahymena IVS. Nucleic Acids Res. 20: 4027–4032.
  • Zhu, H., I. G. Macreadie, and R. A. Butow 1987. RNA processing and expression of an intron-encoded protein in yeast mitochondria: role of a conserved dodecamer sequence. Mol. Cell. Biol. 7: 2530–2537.
  • Zomerdijk, J. C. B., R. Kieft, and P. Borst 1991. Efficient production of functional mRNA mediated by RNA polymerase I in Trypanosoma brucei. Nature 353: 772–775.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.