8
Views
47
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A Positive GATA Element and a Negative Vitamin D Receptor-Like Element Control Atrial Chamber-Specific Expression of a Slow Myosin Heavy-Chain Gene during Cardiac Morphogenesis

, , &
Pages 6023-6034 | Received 17 Feb 1998, Accepted 13 Jul 1998, Published online: 28 Mar 2023

REFERENCES

  • Arceci, R. J., A. A. J. King, M. C. Simon, S. H. Orkin, and D. B. Wilson 1993. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol. Cell. Biol. 13: 2235–2246.
  • Argentin, S., A. Ardati, S. Tremblay, I. Lihrmann, L. Robitaille, J. Drouin, and M. Nemer 1994. Developmental stage-specific regulation of atrial natriuretic factor gene transcription in cardiac cells. Mol. Cell. Biol. 14: 777–790.
  • Biben, C., and R. P. Harvey 1997. Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev. 11: 1357–1369.
  • Bodmer, R. 1993. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118: 719–729.
  • Chen, C. Y., and R. J. Schwartz 1996. Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac α-actin gene transcription. Mol. Cell. Biol. 16: 6372–6384.
  • Crow, M. T., and F. E. Stockdale 1986. The developmental program of fast myosin heavy chain expression in avian skeletal muscles. Dev. Biol. 118: 333–342.
  • de Groot, I. J., W. H. Lamers, and A. F. Moorman 1989. Isomyosin expression patterns during rat heart morphogenesis: an immunohistochemical study. Anat. Rec. 224: 365–373.
  • DeHaan, R. L. 1965. Morphogenesis of the vertebrate heart Organogenesis. In: DeHaan, R. L., and H. Ursprung377–419Holt, Rinehart and Winston, New York, N.Y.
  • Drysdale, T. A., K. D. Patterson, M. Saha, and P. A. Krieg 1997. Retinoic acid can block differentiation of the myocardium after heart specification. Dev. Biol. 188: 205–215.
  • Durocher, D., F. Charron, R. Warren, R. J. Schwartz, and M. Nemer 1997. The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J. 16: 5687–5696.
  • Durocher, D., C.-Y. Chen, A. Ardati, R. J. Schwartz, and M. Nemer 1996. The atrial natriuretic factor promoter is a downstream target for Nkx-2.5 in the myocardium. Mol. Cell. Biol. 16: 4648–4655.
  • Dyson, E., H. M. Sucov, S. W. Kubalak, G. W. Schmid-Schonbein, F. A. DeLano, R. M. Evans, Ross J., Jr., and K. R. Chien 1995. Atrial-like phenotype is associated with embryonic ventricular failure in retinoid X receptor alpha −/− mice. Proc. Natl. Acad. Sci. USA 92: 7386–7390.
  • Edmondson, D. G., G. E. Lyons, J. F. Martin, and E. N. Olson 1994. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120: 1251–1263.
  • Gorman, C. 1985. Pages 143–190. DNA cloning. In: Glover, D. M. IRL Press, Oxford, United Kingdom.
  • Grépin, C., L. Dagnino, L. Robitaille, L. Haberstroh, T. Antakly, and M. Nemer 1994. A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription. Mol. Cell. Biol. 14: 3115–3129.
  • Grépin, C., L. Robitaille, T. Antakly, and M. Nemer 1995. Inhibition of transcription factor GATA-4 expression blocks in vitro cardiac muscle differentiation. Mol. Cell. Biol. 15: 4095–4102.
  • Heikinheimo, M., J. M. Scandrett, and D. B. Wilson 1994. Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Dev. Biol. 164: 361–373.
  • Ip, H. S, D. B. Wilson, M. Heikinheimo, Z. Tang, C.-N. Ting, M. C. Simon, J. M. Leiden, and M. S. Pharmacek 1994. The GATA-4 transcription factor transactivates the cardiac muscle-specific troponin C promoter-enhancer in nonmuscle cells. Mol. Cell. Biol. 14: 7517–7526.
  • Jiang, Y., and T. Evans 1996. The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev. Biol. 174: 258–270.
  • Komuro, I., and S. Izumo 1993. Csx: a murine homeobox-containing gene specifically expressed in the developing heart. Proc. Natl. Acad. Sci. USA 90: 8145–8149.
  • Kubalak, S. W., W. C. Miller-Hance, T. X. O’Brien, E. Dyson, and K. R. Chien 1994. Chamber specification of atrial myosin light chain-2 expression precedes septation during murine cardiogenesis. J. Biol. Chem. 269: 16961–16970.
  • Kuo, C. T., E. E. Morrisey, R. Anandappa, K. Sigrist, M. M. Lu, M. S. Pharmacek, C. Soudais, and J. M. Leiden 1997. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11: 1048–1060.
  • Laverriere, A. C., C. MacNeill, C. Mueller, R. E. Poelmann, J. B. Burch, and T. Evans 1994. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J. Biol. Chem. 269: 23177–23184.
  • Lee, Y., B. Nadal-Ginard, V. Mahdavi, and S. Izumo 1997. Myocyte-specific enhancer factor 2 and thyroid hormone receptor associate and synergistically activate the α-cardiac myosin heavy-chain gene. Mol. Cell. Biol. 17: 2745–2755.
  • Lefeuvre, B., F. Crossin, J. Fontaine-Perus, E. Bandman, and M. F. Gardahaut 1996. Innervation regulates myosin heavy chain isoform expression in developing skeletal muscle fibers. Mech. Dev. 58: 115–127.
  • Li, Q., and D. G. Gardner 1994. Negative regulation of the human atrial natriuretic peptide gene by 1,25-dihydroxyvitamin D3. J. Biol. Chem. 269: 4934–4939.
  • Lin, N. U., P. J. Malloy, N. Sakati, A. al-Ashwal, and D. Feldman 1996. A novel mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor causes hereditary 1,25-dihydroxyvitamin D-resistant rickets. J. Clin. Endocrinol. Metab. 81: 2564–2569.
  • Lin, Q., J. Schwarz, C. Bucana, and E. N. Olson 1997. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276: 1404–1407.
  • Lints, T. J., L. M. Parsons, L. Hartley, I. Lyons, and R. P. Harvey 1993. Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119: 969.
  • Lyons, G. E. 1994. In situ analysis of the cardiac muscle gene program during embryogenesis. TCM 4: 70–77.
  • Lyons, G. E, S. Schiaffino, D. Sassoon, P. Barton, and M. Buckingham 1990. Developmental regulation of myosin gene expression in mouse cardiac muscle. J. Cell Biol. 111: 2427–2436.
  • Lyons, I., L. M. Parsons, L. Hartley, R. Li, J. E. Andrews, L. Robb, and R. P. Harvey 1995. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 9: 1654–1666.
  • Mangelsdorf, D. J., U. Borgmeyer, R. A. Heyman, J. Y. Zhou, E. S. Ong, A. E. Oro, A. Kakizuka, and R. M. Evans 1992. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev. 6: 329–344.
  • Mangelsdorf, D. J., and R. M. Evans 1995. The RXR heterodimers and orphan receptors. Cell 83: 841–850.
  • Martin, J. F., J. J. Schwarz, and E. N. Olson 1993. Myocyte enhancer factor (MEF) 2C; a tissue-restricted member of the MEF-2 family of transcription factors. Proc. Natl. Acad. Sci. USA 90: 5282–5286.
  • McGrew, M. J., N. Bogdanova, K. Hasegawa, S. H. Hughes, R. N. Kitsis, and N. Rosenthal 1996. Distinct gene expression patterns in skeletal and cardiac muscle are dependent on common regulatory sequences in the MLC1/3 locus.Mol. Cell. Biol. 16: 4524–4534.
  • Molkentin, J. D., B. L. Black, J. F. Martin, and E. N. Olson 1995. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83: 1125–1136.
  • Molkentin, J. D., D. V. Kalvakolanu, and B. E. Markham 1994. Transcription factor GATA-4 regulates cardiac muscle-specific expression of the α-myosin heavy-chain gene. Mol. Cell. Biol. 14: 4947–4957.
  • Molkentin, J. D., Q. Lin, S. A. Duncan, and E. N. Olson 1997. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11: 1061–1972.
  • Molkentin, J. D., and B. E. Markham 1993. Myocyte-specific enhancer-binding factor (MEF-2) regulates alpha-cardiac myosin heavy chain gene expression in vitro and in vivo. J. Biol. Chem. 268: 19512–19520.
  • Morrisey, E. E., H. S. Ip, M. M. Lu, and M. S. Parmacek 1996. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev. Biol. 177: 309–322.
  • Morrisey, E. E., H. S. Ip, Z. Tang, M. M. Lu, and M. S. Parmacek 1997. GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Dev. Biol. 183: 21–36.
  • Nikovits, W.Jr., G. F. Wang, J. L. Feldman, J. B. Miller, R. Wade, L. Nelson, and F. E. Stockdale 1996. Isolation and characterization of an avian slow myosin heavy chain gene expressed during embryonic skeletal muscle fiber formation. J. Biol. Chem. 271: 17047–17056.
  • O’Brien, T. X., K. J. Lee, and K. R. Chien 1993. Positional specification of ventricular myosin light chain 2 expression in the primitive murine heart tube. Proc. Natl. Acad. Sci. USA 90: 5157–5161.
  • Ross, R. S., S. Navankasattusas, R. P. Harvey, and K. R. Chien 1996. An HF-1a/HF-1b/MEF-2 combinatorial element confers cardiac ventricular specificity and established an anterior-posterior gradient of expression. Development 122: 1799–1809.
  • Sepulveda, J. L., N. Belaguli, V. Nigam, C.-Y. Chen, M. Nemer, and R. J. Schwartz 1998. GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol. Cell. Biol. 18: 3405–3415.
  • Srivastava, D., P. Cserjesi, and E. N. Olson 1995. A subclass of bHLH proteins required for cardiac morphogenesis. Science 270: 1995–1999.
  • Srivastava, D., T. Thomas, Q. Lin, M. L. Kirby, D. Brown, and E. N. Olson 1997. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat. Genet. 16: 154–160.
  • Stainier, D. Y., and M. C. Fishman 1992. Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev. Biol. 153: 91–101.
  • Tabin, C. J. 1991. Retinoids, homeoboxes, and growth factors: toward molecular models for limb development. Cell 66: 199–217.
  • Thomas, T., H. Yamagishi, P. O. Overbeek, E. N. Olson, and D. Srivastava 1998. The bHLH factors, dHAND and eHAND, specify pulmonary and systemic cardiac ventricles independent of left-right sideness. Dev. Biol. 196: 228–236.
  • Thuerauf, D. J., D. S. Hanford, and C. C. Glembotski 1994. Regulation of rat brain natriuretic peptide transcription. A potential role for GATA-related transcription factors in myocardial cell gene expression. J. Biol. Chem. 269: 17772–17775.
  • Titcomb, M. W., M. M. Gottardis, J. W. Pike, and E. A. Allegretto 1994. Sensitive and specific detection of retinoid receptor subtype proteins in cultured cell and tumor extracts. Mol. Endocrinol. 8: 870–877.
  • Umesono, K., K. K. Murakami, C. C. Thompson, and R. M. Evans 1991. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65: 1255–1266.
  • Wang, G. F., and F. E. Stockdale. Chamber-specific gene expression and regulation during heart development. In R. Harvey and N. Rosenthal (ed.), Heart development, in press. Academic Press, New York, N.Y.
  • Wang, G. F., W. Nikovits, M. Schleinitz, and F. E. Stockdale 1996. Atrial chamber-specific expression of the slow myosin heavy chain 3 gene in the embryonic heart. J. Biol. Chem. 271: 19836–19845.
  • Wu, J., M. Garami, T. Cheng, and D. G. Gardner 1996. 1,25(OH)2 vitamin D3, and retinoic acid antagonize endothelin-stimulated hypertrophy of neonatal rat cardiac myocytes. J. Clin. Invest. 97: 1577–1588.
  • Yoshizawa, T., Y. Handa, Y. Uematsu, S. Takeda, K. Sekine, Y. Yoshihara, T. Kawakami, K. Arioka, H. Sato, Y. Uchiyama, et al. 1997. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat. Genet. 16: 391–396.
  • Yutzey, K., M. Gannon, and D. Bader 1995. Diversification of cardiomyogenic cell lineages in vitro. Dev. Biol. 170: 531–541.
  • Yutzey, K. E, J. T. Rhee, and D. Bader 1994. Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart. Development 120: 871–883.
  • Zeller, R., K. D. Bloch, B. S. Williams, R. J. Arceci, and C. E. Seidman 1987. Localized expression of the atrial natriuretic factor gene during cardiac embryogenesis. Genes Dev. 1: 693–698.
  • Zhou, M. D., H. M. Sucov, R. M. Evans, and K. R. Chien 1995. Retinoid-dependent pathways suppress myocardial cell hypertrophy. Proc. Natl. Acad. Sci. USA 92: 7391–7395.
  • Zou, Y., and K. R. Chien 1995. EFIA/YB-1 is a component of cardiac HF-1A binding activity and positively regulates transcription of the myosin light-chain 2v gene. Mol. Cell. Biol. 15: 2972–2982.
  • Zou, Y., S. Evans, J. Chen, H. C. Kuo, R. P. Harvey, and K. R. Chien 1997. CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development 124: 793–804.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.