11
Views
148
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Viral Oncoproteins Discriminate between p53 and the p53 Homolog p73

, , , , &
Pages 6316-6324 | Received 30 Apr 1998, Accepted 27 Jul 1998, Published online: 28 Mar 2023

REFERENCES

  • Band, V., S. Dalal, L. Delmolino, and E. J. Androphy 1993. Enhanced degradation of p53 protein in HPV-E6 and BPV-1 E6 immortalized human mammary epithelial cells. EMBO J. 12: 1847–1852.
  • Bargonetti, J., J. J. Manfredi, X. Chen, D. R. Marshak, and C. Prives 1993. A proteolytic fragment from the central region of p53 has marked sequence-specific DNA-binding activity when generated from wild-type but not oncogenic mutant p53 protein. Genes Dev. 7: 2565–2574.
  • Bargonetti, J., I. Reynisdottir, P. N. Friedman, and C. Prives 1992. Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes Dev. 6: 1886–1898.
  • Braithwaite, A. W., G. E. Blair, C. C. Nelson, J. McGovern, and A. J. Bellett 1991. Adenovirus E1b-58 kD antigen binds to p53 during infection of rodent cells: evidence for an N-terminal binding site on p53. Oncogene 6: 781–787.
  • Caput, D. Unpublished data.
  • Cheng, N. C., N. Van Roy, A. Chan, M. Beitsma, A. Westerveld, F. Speleman, and R. Versteeg 1995. Deletion mapping in neuroblastoma cell lines suggests two distinct tumor suppressor genes in the 1p36 region, only one of which is associated with N-myc amplification. Oncogene 10: 291–297.
  • Chiba, I., T. Takahashi, M. M. Nau, D. D. D’Amico, D. T. Curiel, T. Mitsudomi, D. L. Buchhagen, D. Carbone, S. Piantadosi, H. Koga, P. T. Reissman, D. J. Slamon, E. C. Holmes, and J. D. Minna 1990. Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer. Oncogene 5: 1603–1610.
  • Cho, Y., S. Gorina, P. D. Jeffrey, and N. P. Pavletich 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265: 346–55.
  • Debbas, M., and E. White 1993. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev. 7: 546–554.
  • Diller, L., J. Kassel, C. Nelson, M. Gryka, G. Litwak, M. Gebhardt, B. Bressac, M. Ozturk, S. Baker, B. Vogelstein, and S. Friend 1990. p53 functions as a cell cycle control protein in osteosarcoma. Mol. Cell. Biol. 10: 5772–5781.
  • El-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.
  • Farmer, G., J. Bargonetti, H. Zhu, P. Fridman, R. Prywes, and C. Prives 1992. Wild-type p53 activates transcription in vitro. Nature 358: 83–86.
  • Graham, F. L., and A. van der Eb 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. J. Virol. 52: 456–467.
  • Harlow, E., L. V. Crawford, D. C. Pim, and N. M. Williamson 1981. Monoclonal antibodies specific for simian virus 40 tumor antigens. J. Virol. 39: 861–869.
  • Harlow, E., and D. Lane 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hollstein, M. K., K. Rice, M. S. Greenblatt, T. Soussi, R. Fucks, T. Sorlie, E. Hovig, B. Smith-Sorenson, R. Montesano, and C. C. Harris 1994. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22: 3551–3555.
  • Hoppe-Seyler, F., and K. Butz 1993. Repression of endogenous p53 transactivation function in HeLa cervical carcinoma cells by human papillomavirus type 16 E6, human mdm-2, and mutant p53. J. Virol. 67: 3111–3117.
  • Hsieh, J., S. Fredersdorf, T. Kouzarides, K. Martin, and X. Lu 1997. E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction. Genes Dev. 11: 1840–1852.
  • Huibregtse, J. M., M. Scheffner, and P. M. Howley 1991. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO 10: 4129–4135.
  • Jiang, D., A. Srinivasan, G. Lozano, and P. D. Robbins 1993. SV40 T antigen abrogates p53-mediated transcriptional activity. Oncogene 8: 2805–2812.
  • Jost, C., M. Marin, and W. G. Kaelin 1997. p73 is a human p53-related protein that can induce apoptosis. Nature 389: 191–194.
  • Jost, C. A., D. Ginsberg, and W. G. Kaelin 1996. A conserved region of unknown function participates in the recognition of E2F family members by the adenovirus E4 ORF 6/7 protein. Virology 220: 78–90.
  • Kaghad, M., H. Bonnet, A. Yang, L. Creancier, J.-C. Biscan, A. Valent, A. Minty, P. Chalon, J.-M. Lelias, X. Dumont, P. Ferrara, F. McKeon, and D. Caput 1997. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90: 809–819.
  • Kao, C. C., P. R. Yew, and A. J. Berk 1990. Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55K proteins. Virology 179: 806–814.
  • Kierstead, T. D., and M. J. Tevethia 1993. Association of p53 binding and immortalization of primary C57BL/6 mouse embryo fibroblasts by using simian virus 40 T-antigen mutants bearing internal overlapping deletion mutations. J. Virol. 67: 1817–1829.
  • Kowalik, T., J. DeGregori, J. Schwarz, and J. Nevins 1995. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J. Virol. 69: 2491–2500.
  • Lane, D. P., and L. V. Crawford 1979. T antigen is bound to a host protein in SV40-transformed cells. Nature 278: 261–263.
  • Li, B., and S. Fields 1993. Identification of mutations in p53 that affect its binding to SV40 large T antigen by using the yeast two-hybrid system. FASEB J. 7: 957–963.
  • Li, X., and P. Coffino 1996. High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation. J. Virol. 70: 4509–4516.
  • Lin, J., J. Chen, B. Elenbaas, and A. J. Levine 1994. Several hydrophobic amino-acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8: 1235–1246.
  • Linzer, D. I. H., and A. J. Levine 1979. Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17: 43–52.
  • Mansur, C. P., B. Marcus, S. Dalal, and E. J. Androphy 1995. The domain of p53 required for binding HPV 16 E6 is separable from the degradation domain. Oncogene 10: 457–465.
  • Mietz, J. A., T. Unger, J. M. Huibregtse, and P. M. Howley 1992. The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO 11: 5013–5020.
  • Osada, M., M. Ohba, C. Kawahara, C. Ishioka, R. Kanamaru, I. Katoh, Y. Ikawa, Y. Nimura, A. Nakagawara, M. Obinata, and S. Ikawa 1998. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat. Med. 4: 839–843.
  • Pavletich, N. P., K. A. Chambers, and C. O. Pabo 1993. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev. 7: 2556–2564.
  • Phillips, A., S. Bates, K. Ryan, K. Helin, and K. Vousden 1997. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev. 11: 1853–1863.
  • Polyak, K., Y. Xia, J. Zweier, K. Kinzler, and B. Vogelstein 1997. A model for p53-induced apoptosis. Nature 389: 300–305.
  • Qin, X. Q., D. M. Livingston, W. G. Kaelin, and P. Adams 1994. Deregulated E2F1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl. Acad. Sci. USA 91: 10918–10922.
  • Ruppert, J., and B. Stillman 1993. Analysis of a protein-binding domain of p53. Mol. Cell. Biol. 13: 3811–3820.
  • Scheffner, M., T. Takahashi, J. Huibregtse, J. Minna, and P. Howley 1992. Interaction of the human papillomavirus type 16 E6 oncoprotein with wild-type and mutant human p53 proteins. J. Virol. 66: 5100–5105.
  • Scheffner, M., B. A. Werness, J. M. Huibregtse, A. J. Levine, and P. M. Howley 1990. The E6 oncoprotein encoded by human papillomaviruses types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136.
  • Schmale, H., and C. Bamberger 1997. A novel protein with strong homology to the tumor suppressor p53. Oncogene 15: 1363–1367.
  • Segawa, K., A. Minowa, K. Sugaswa, T. Takano, and F. Hanaoka 1993. Abrogation of p53-mediated transactivation by SV40 large T antigen. Oncogene 8: 543–548.
  • Shan, B., and W.-H. Lee 1994. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell. Biol. 14: 8166–8173.
  • Sturzbecher, H. W., T. Maimets, P. Chumakov, R. Brain, C. Addison, V. Simanis, K. Rudge, R. Philp, M. Grimaldi, W. Court, and J. R. Jenkins 1990. p53 interacts with p34 cdc2 in mammalian cells: implication for cell cycle control and oncogenesis. Oncogene 5: 795–801.
  • Takeda, O., C. Homma, N. Maseki, M. Sakurai, N. Kanda, M. Schwab, Y. Nakamura, and Y. Kaneko 1994. There may be two tumor suppressor genes on chromosome arm 1p closely associated with biologically distinct subtypes of neuroblastoma. Genes Chrom. Cancer 10: 30–39.
  • Trink, B., K. Okami, L. Wu, V. Sriuranpong, J. Jen, and D. Sidransky 1998. A new human p53 homologue. Nat. Med. 4: 747.
  • Versteeg, R., H. Caron, N. C. Cheng, P. van der Drift, R. Slater, A. Westerveld, P. A. Voute, O. Delattre, G. Laureys, N. Van Roy, and F. Speleman 1995. 1p36: every subband a suppressor. Eur. J. Cancer 31A: 538–541.
  • Wang, Y., M. Reed, P. Wang, J. E. Stenger, G. Mayr, M. E. Anderson, J. F. Schwedes, and P. Tegtmeyer 1993. p53 domains: identification and characterization of two autonomous DNA-binding regions. Genes Dev. 7: 2575–2586.
  • Werness, B. A., A. J. Levine, and P. M. Howley 1990. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248: 76–79.
  • Wu, X., and A. J. Levine 1994. p53 and E2F1 cooperate to mediate apoptosis. Proc. Natl. Acad. Sci. USA 91: 3602–3606.
  • Yew, P. R., and A. J. Berk 1992. Inhibition of p53 transactivation required for transformation by adenovirus early E1B protein. Nature 357: 82–85.
  • Zalvide, J., and J. A. DeCaprio 1995. Role of pRB-related proteins in simian virus 40 large T-antigen-mediated transformation. Mol. Cell. Biol. 15: 5800–5810.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.