32
Views
112
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

TAL1 and LIM-Only Proteins Synergistically Induce Retinaldehyde Dehydrogenase 2 Expression in T-Cell Acute Lymphoblastic Leukemia by Acting as Cofactors for GATA3

, &
Pages 6939-6950 | Received 06 Jul 1998, Accepted 01 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Agulnick, A. D., M. Taira, J. J. Breen, T. Tanaka, I. B. Dawid, and H. Westphal 1996. Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins. Nature (London) 384: 270–272.
  • Aplan, P. D., C. A. Jones, D. S. Chervinsky, X. Zhao, M. Ellsworth, C. Wu, E. A. McGuire, and K. W. Gross 1997. An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice. EMBO J. 16: 2408–2419.
  • Bach, I., C. Carriere, H. P. Ostendorff, B. Andersen, and M. G. Rosenfeld 1997. A family of LIM domain-associated cofactors confer transcriptional synergism between LIM and Otx homeodomain proteins. Genes Dev. 11: 1370–1380.
  • Bash, R. O., S. Hall, C. F. Timmons, W. M. Crist, M. Amylon, R. G. Smith, and R. Baer 1995. Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? A Pediatric Oncology Group study. Blood 86: 666–676.
  • Begley, C. G., P. D. Aplan, S. M. Denning, B. F. Haynes, T. A. Waldmann, and I. R. Kirsch 1989. The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc. Natl. Acad. Sci. USA 86: 10128–10132.
  • Bernard, O., N. Lecointe, P. Jonveaux, M. Souyri, M. Mauchauffe, R. Berger, C. J. Larsen, and D. Mathieu-Mahul 1991. Two site-specific deletions and t(1;14) translocation restricted to human T-cell acute leukemias disrupt the 5′ part of the tal-1 gene. Oncogene 6: 1477–1488.
  • Boehm, T., L. Foroni, Y. Kaneko, M. F. Perutz, and T. H. Rabbitts 1991. The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc. Natl. Acad. Sci. USA 88: 4367–4371.
  • Brennan, T. J., T. Chakraborty, and E. N. Olson 1991. Mutagenesis of the myogenin basic region identifies an ancient protein motif critical for activation of myogenesis. Proc. Natl. Acad. Sci. USA 88: 5675–5679.
  • Carroll, A. J., W. M. Crist, M. P. Link, M. D. Amylon, D. J. Pullen, A. H. Ragab, G. R. Buchanan, R. S. Wimmer, and T. J. Vietti 1990. The t(1;14)(p34;q11) is nonrandom and restricted to T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 76: 1220–1224.
  • Chen, Q., J. T. Cheng, L. H. Tasi, N. Schneider, G. Buchanan, A. Carroll, W. Crist, B. Ozanne, M. J. Siciliano, and R. Baer 1990. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J. 9: 415–424.
  • Davis, R. L., P. F. Cheng, A. B. Lassar, and H. Weintraub 1990. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60: 733–746.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11: 1475–1489.
  • Elwood, N. J., and C. G. Begley 1995. Reconstitution of mice with bone marrow cells expressing the SCL gene is insufficient to cause leukemia. Cell Growth Differ. 6: 19–25.
  • Finger, L. R., J. Kagan, G. Christopher, J. Kurtzberg, M. S. Hershfield, P. C. Nowell, and C. M. Croce 1989. Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. Proc. Natl. Acad. Sci. USA 86: 5039–5043.
  • Foroni, L., T. Boehm, L. White, A. Forster, P. Sherrington, X. B. Liao, C. I. Brannan, N. A. Jenkins, N. G. Copeland, and T. H. Rabbitts 1992. The rhombotin gene family encode related LIM-domain proteins whose differing expression suggests multiple roles in mouse development. J. Mol. Biol. 226: 747–761.
  • Fujiwara, Y., C. P. Browne, K. Cunniff, S. C. Goff, and S. H. Orkin 1996. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc. Natl. Acad. Sci. USA 93: 12355–12358.
  • Green, A. R., E. DeLuca, and C. G. Begley 1991. Antisense SCL suppresses self-renewal and enhances spontaneous erythroid differentiation of the human leukaemic cell line K562. EMBO J. 10: 4153–4158.
  • Greenberg, J. M., T. Boehm, M. V. Sofroniew, R. J. Keynes, S. C. Barton, M. L. Norris, M. A. Surani, M. G. Spillantini, and T. H. Rabbits 1990. Segmental and developmental regulation of a presumptive T-cell oncogene in the central nervous system. Nature (London) 344: 158–160.
  • Ho, I. C., P. Vorhees, N. Marin, B. K. Oakley, S. F. Tsai, S. H. Orkin, and J. M. Leiden 1991. Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J. 10: 1187–1192.
  • Hsu, H. L., J. T. Cheng, Q. Chen, and R. Baer 1991. Enhancer-binding activity of the Tal-1 oncoprotein in association with the E47/E12 helix-loop-helix proteins. Mol. Cell. Biol. 11: 3037–3042.
  • Hsu, H. L., L. Huang, J. T. Tsan, W. Funk, W. E. Wright, J. S. Hu, R. E. Kingston, and R. Baer 1994. Preferred sequences for DNA recognition by the TAL1 helix-loop-helix proteins. Mol. Cell. Biol. 14: 1256–1265.
  • Hsu, H. L., I. Wadman, and R. Baer 1994. Formation of in vivo complexes between the TAL1 and E2A polypeptides of leukemic T cells. Proc. Natl. Acad. Sci. USA 91: 3181–3185.
  • Iwata, M., M. Mukai, Y. Nakai, and R. Iseki 1992. Retinoic acids inhibit activation-induced apoptosis in T cell hybridomas and thymocytes. J. Immunol. 149: 3302–3308.
  • Javahery, R., A. Khachi, K. Lo, B. Zenzie-Gregory, and S. T. Smale 1994. DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol. Cell. Biol. 14: 116–127.
  • Jurata, L. W., D. A. Kenny, and G. N. Gill 1996. Nuclear LIM interactor, a rhombotin and LIM homeodomain interacting protein, is expressed early in neuronal development. Proc. Natl. Acad. Sci. USA 93: 11693–11698.
  • Kawana, M., M. E. Lee, E. E. Quertermous, and T. Quertermous 1995. Cooperative interaction of GATA-2 and AP1 regulates transcription of the endothelin-1 gene. Mol. Cell. Biol. 15: 4225–4231.
  • Kelliher, M. A., D. C. Seldin, and P. Leder 1996. Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIα. EMBO J. 15: 5160–5166.
  • Ko, L. J., M. Yamamoto, M. W. Leonard, K. M. George, P. Ting, and J. D. Engel 1991. Murine and human T-lymphocyte GATA-3 factors mediate transcription through a cis-regulatory element within the human T-cell receptor delta gene enhancer. Mol. Cell. Biol. 11: 2778–2784.
  • Ko, L. J., and J. D. Engel 1993. DNA-binding specificities of the GATA transcription factor family. Mol. Cell. Biol. 13: 4011–4022.
  • Larson, R. C., I. Lavenir, T. A. Larson, R. Baer, A. J. Warren, I. Wadman, K. Nottage, and T. H. Rabbits 1996. Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J. 15: 1021–1027.
  • Lefebvre, P., M. P. Gaub, A. Tahayato, C. Rochette-Egly, and P. Formstecher 1995. Protein phosphatases 1 and 2A regulate the transcriptional and DNA binding activities of retinoic acid receptors. J. Biol. Chem. 270: 10806–10816.
  • Mao, S., G. A. Neale, and R. M. Goorha 1997. T-cell proto-oncogene rhombotin-2 is a complex transcription regulator containing multiple activation and repression domains. J. Biol. Chem. 272: 5594–5599.
  • Marine, J., and A. Winoto 1991. The human enhancer-binding protein Gata3 binds to several T-cell receptor regulatory elements. Proc. Natl. Acad. Sci. USA 88: 7284–7288.
  • McGuire, E. A., R. D. Hockett, K. M. Pollock, M. F. Bartholdi, S. J. O’Brien, and S. J. Korsmeyer 1989. The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including ttg-1 , a gene encoding a potential zinc finger protein. Mol. Cell. Biol. 9: 2124–2132.
  • McGuire, E. A., A. R. Davis, and S. J. Korsmeyer 1991. T-cell translocation gene 1 (Ttg-1) encodes a nuclear protein normally expressed in neural lineage cells. Blood 77: 599–606.
  • McKnight, S. L., E. R. Gavis, R. Kingsbury, and R. Axel 1981. Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: identification of an upstream control region. Cell 25: 385–398.
  • Merika, M., and S. H. Orkin 1993. DNA-binding specificity of GATA family transcription factors. Mol. Cell. Biol. 13: 3999–4010.
  • Merika, M., and S. H. Orkin 1995. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol. Cell. Biol. 15: 2437–2447.
  • Molkentin, J. D., B. L. Black, J. F. Martin, and E. N. Olson 1995. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83: 1125–1136.
  • Murre, C., P. S. McCaw, and D. Baltimore 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56: 777–783.
  • Ono, Y., N. Fukuhara, and O. Yoshie 1997. Transcriptional activity of TAL1 in T cell acute lymphoblastic leukemia (T-ALL) requires RBTN1 or −2 and induces TALLA1, a highly specific tumor marker of T-ALL. J. Biol. Chem. 272: 4576–4581.
  • Osada, H., G. Grutz, H. Axelson, A. Forster, and T. H. Rabbits 1995. Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1. Proc. Natl. Acad. Sci. USA 92: 9585–9589.
  • Pevny, L., M. C. Simon, E. Robertson, W. H. Klein, S. F. Tsai, V. D’Agati, S. H. Orkin, and F. Costantini 1991. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature (London) 349: 257–260.
  • Pulford, K., N. Lecointe, K. Leroy-Viard, M. Jones, D. Mathieu-Mahul, and D. Y. Mason 1995. Expression of TAL-1 proteins in human tissues. Blood 85: 675–684.
  • Rabbitts, T. H., and T. Boehm 1990. LIM domains. Nature (London) 346: 418.
  • Rabbitts, T. H. 1994. Chromosomal translocations in human cancer. Nature (London) 372: 143–149.
  • Robb, L., J. E. Rasko, M. L. Bath, A. Strasser, and C. G. Begley 1995. scl, a gene frequently activated in human T cell leukaemia, does not induce lymphomas in transgenic mice. Oncogene 10: 205–209.
  • Robb, L., I. Lyons, R. Li, L. Hartley, F. Kontgen, R. P. Harvey, D. Metcalf, and C. G. Begley 1995. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc. Natl. Acad. Sci. USA 92: 7075–7079.
  • Royer-Pokora, B., U. Loos, and W. D. Ludwig 1991. TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene 6: 1887–1893.
  • Sanchez-Garcia, I., H. Axelson, and T. H. Rabbitts 1995. Functional diversity of LIM proteins: amino-terminal activation domains in the oncogenic proteins RBTN1 and RBTN2. Oncogene 10: 1301–1306.
  • Schmeichel, K. L., and M. C. Beckerle 1994. The LIM domain is a modular protein-binding interface. Cell 79: 211–219.
  • Shivdasani, R. A., E. L. Mayer, and S. H. Orkin 1995. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature (London) 373: 432–434.
  • Smith, V. M., P. P. Lee, S. Szychowski, and A. Winoto 1995. GATA-3 dominant negative mutant. Functional redundancy of the T cell receptor alpha and beta enhancers. J. Biol. Chem. 270: 1515–1520.
  • Takagi, S., K. Fujikawa, T. Imai, N. Fukuhara, K. Fukudome, M. Minegishi, S. Tsuchiya, T. Konno, Y. Hinuma, and O. Yoshie 1995. Identification of a highly specific surface marker of T-cell acute lymphoblastic leukemia and neuroblastoma as a new member of the transmembrane 4 superfamily. Int. J. Cancer 61: 706–715.
  • Tsai, S. F., D. I. Martin, L. I. Zon, A. D. D’Andrea, G. G. Wong, and S. H. Orkin 1989. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature (London) 339: 446–451.
  • Valge-Archer, V. E., H. Osada, A. J. Warren, A. Forster, J. Li, R. Baer, and T. H. Rabbitts 1994. The LIM protein RBTN2 and the basic helix-loop-helix protein TAL1 are present in a complex in erythroid cells. Proc. Natl. Acad. Sci. USA 91: 8617–8621.
  • Visvader, J., C. G. Begley, and J. M. Adams 1991. Differential expression of the LYL, SCL and E2A helix-loop-helix genes within the hemopoietic system. Oncogene 6: 187–194.
  • Visvader, J. E., X. Mao, Y. Fujiwara, K. Hahm, and S. H. Orkin 1997. The LIM-domain binding protein Ldb1 and its partner LMO2 act as negative regulators of erythroid differentiation. Proc. Natl. Acad. Sci. USA 94: 13707–13712.
  • Wadman, I., J. Li, R. O. Bash, A. Forster, H. Osada, T. H. Rabbitts, and R. Baer 1994. Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J. 13: 4831–4839.
  • Wadman, I. A., H. Osada, G. G. Grutz, A. D. Agulnick, H. Westphal, A. Forster, and T. H. Rabbitts 1997. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16: 3145–3157.
  • Warren, A. J., W. H. Colledge, M. B. Carlton, M. J. Evans, A. J. Smith, and T. H. Rabbitts 1994. The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78: 45–57.
  • Yang, Y., M. S. Vacchio, and J. D. Ashwell 1993. 9-cis-retinoic acid inhibits activation-driven T-cell apoptosis: implications for retinoid X receptor involvement in thymocyte development. Proc. Natl. Acad. Sci. USA 90: 6170–6174.
  • Zhao, D., P. McCaffery, K. J. Ivins, R. L. Neve, P. Hogan, W. W. Chin, and U. C. Drager 1996. Molecular identification of a major retinoic-acid-synthesizing enzyme, a retinaldehyde-specific dehydrogenase. Eur. J. Biochem. 240: 15–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.