6
Views
111
CrossRef citations to date
0
Altmetric
Cell Growth and Development

A Function for Phosphatidylinositol 3-Kinase β (p85α-p110β) in Fibroblasts during Mitogenesis: Requirement for Insulin- and Lysophosphatidic Acid-Mediated Signal Transduction

, , &
Pages 7119-7129 | Received 02 Apr 1998, Accepted 07 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Alessi, D. R., S. R. James, C. P. Downes, A. B. Holmes, P. R. J. Gaffney, R. B. Reese, and P. Cohen 1997. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol. 7: 261–269.
  • Carpenter, C. L., K. R. Auger, B. C. Duckworth, W.-M. Hou, B. Schaffhausen, and L. C. Cantley 1993. A tightly associated serine/threonine protein kinase regulates phosphoinositide 3-kinase activity. Mol. Cell. Biol. 13: 1657–1665.
  • Chantry, D., A. Vojtek, A. Kashishian, D. A. Holtzman, C. Wood, P. W. Gray, J. A. Cooper, and M. F. Hoekstra 1997. p110δ, a novel PI 3-K catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J. Biol. Chem. 272: 19236–19241.
  • Dérijard, B., M. Hibi, I.-H. Wu, T. Barrett, B. Su, T. Deng, M. Karin, and R. Davis 1994. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-jun activation domain. Cell 76: 1025–1037.
  • Dhand, R., I. Hiles, G. Panayotou, S. Roche, M. J. Fry, I. Gout, N. F. Totty, O. Truong, P. Vicendo, K. Yonezawa, M. Kasuga, S. A. Courtneidge, and M. D. Waterfield 1994. PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J. 13: 522–533.
  • Dikic, I., G. Tokiwa, S. Lev, S. A. Courtneidge, and J. Schlessinger 1996. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383: 547–550.
  • Dilworth, S. M., and V. P. Horner 1993. Novel monoclonal antibodies that differentiate between the binding of pp60c-src or protein phosphatase 2A by polyomavirus middle T antigen. J. Virol. 67: 2235–2244.
  • Falasca, M., S. K. Logan, V. P. Lehto, G. Baccante, M. A. Lemmon, and J. Schlessinger 1998. Activation of phospholipase Cγ by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J. 17: 414–422.
  • Fantl, W., J. A. Escobedo, G. A. Martin, C. W. Turck, M. del Rosario, F. McCormick, and L. T. Williams 1992. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69: 413–424.
  • Hawes, B. E., L. M. Luttrell, T. van Biesen, and R. J. Lefkowitz 1996. Phosphatidylinositol 3-kinase is an early intermediate in the Gβγ-mediated mitogen-activated protein kinase signaling pathway. J. Biol. Chem. 271: 12133–12136.
  • Hiles, I. D., M. Otsu, S. Volinia, M. J. Fry, I. Gout, R. Dhand, G. Panayotou, F. Ruiz-Larrea, A. Thompson, N. F. Totty, J. J. Hsuan, S. A. Courtneidge, P. J. Parker, and M. D. Waterfield 1992. Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell 70: 419–429.
  • Hu, P., A. Mondino, E. Y. Skolnik, and J. Schlessinger 1993. Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol. Cell. Biol. 13: 7677–7688.
  • Ireton, K., B. Payrastre, H. Chap, W. Ogawa, H. Sakaue, M. Kasuga, and P. Cossart 1996. A role for phosphoinositide 3-kinase in bacterial invasion. Science 274: 780–782.
  • Jhun, B. H., D. W. Rose, B. L. Seely, L. Rameh, L. Cantley, A. R. Saltiel, and J. M. Olefsky 1994. Microinjection of the SH2 domain of the 85-kilodalton subunit of phosphatodylinositol 3-kinase inhibits insulin-induced DNA synthesis and c-fos expression. Mol. Cell. Biol. 14: 7466–7475.
  • Joneson, T., M. A. White, M. H. Wigler, and D. Bar-Sagi 1996. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors. Science 271: 810–812.
  • Kazlauskas, A., A. Kashishian, J. A. Cooper, and M. Valius 1992. GTPase-activating protein and phosphatidylinositol 3-kinase bind to distinct regions of the platelet-derived growth factor receptor β subunit. Mol. Cell. Biol. 12: 2534–2544.
  • Khwaja, A., P. Rodriguez-Viciana, S. Wennström, P. H. Warne, and J. Downward 1997. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 16: 2783–2793.
  • Klarlund, J. K., A. Guilherme, J. J. Holik, J. V. Virbasius, A. Chawla, and M. P. Czech 1997. Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 275: 1927–1930.
  • Klippel, A., W. M. Kavanaugh, D. Pot, and L. T. Williams 1997. A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol. Cell. Biol. 17: 338–344.
  • Koegl, M., R. M. Kypta, M. Bergman, K. Alitalo, and S. A. Courtneidge 1994. Rapid and efficient purification of Src homology 2 domain-containing proteins: Fyn, Csk, and phosphatidylinositol 3-kinase p85. Biochem. J. 302: 737–744.
  • Kranenburg, O., I. Verlaan, P. L. Hordijk, and W. H. Moolenaar 1997. Gi-mediated activation of the Ras/MAP kinase pathway involves a 100KDa tyrosine-phosphorylated Grb2 SH3 binding protein, but not Src nor Shc. EMBO J. 16: 3097–3105.
  • Kurosu, H., T. Maehama, T. Okada, T. Yamamoto, S. Hoshino, Y. Fukui, M. Ui, O. Hazeki, and T. Katada 1997. Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110β is synergistically activated by the βγ subunits of G proteins and phosphotyrosyl peptide. J. Biol. Chem. 272: 24252–24256.
  • Kyriakis, J., P. Banerjee, E. Nikolakaki, T. Dai, E. Rubie, M. Ahmad, J. Avruch, and J. Woodgett 1994. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156–160.
  • Logan, S. K., M. Falasca, P. Hu, and J. Schlessinger 1997. Phosphatidylinositol 3-kinase mediates epidermal growth factor-induced activation of the c-Jun N-terminal kinase signaling pathway. Mol. Cell. Biol. 17: 5784–5790.
  • Lopez-Ilasaca, M., P. Crespo, P. G. Pellici, J. S. Gutkind, and R. Wetzker 1997. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase γ. Science 275: 394–397.
  • McIlroy, J., D. Chen, C. Wjasow, T. Michaeli, and J. M. Backer 1997. Specific activation of p85-p110 phosphatidylinositol 3′-kinase stimulates synthesis by Ras- and p70S6 kinase-dependent pathways. Mol. Cell. Biol. 17: 248–255.
  • Pallas, D. C., L. K. Sharrick, B. L. Martin, S. Jasper, T. B. Miller, D. L. Brautigan, and T. M. Roberts 1990. Polyoma small and middle T antigen and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 60: 167–176.
  • Ptasznik, A., A. Traynor-Kaplan, and G. M. Bokoch 1995. G protein-coupled chemoattractant receptors regulate Lyn tyrosine kinase Shc adapter protein signaling complexes. J. Biol. Chem. 270: 19969–19973.
  • Rameh, L. E., C. S. Chen, and L. C. Cantley 1995. Phosphatidylinositol (3,4,5)P3 interacts with SH2 domains and modulates PI 3-kinase association with tyrosine phosphorylated proteins. Cell 83: 821–830.
  • Roche, S., M. Koegl, and S. A. Courtneidge 1994. The phosphatidylinositol 3-kinase α is required for DNA synthesis induced by some, but not all, growth factors. Proc. Natl. Acad. Sci. USA 91: 9185–9189.
  • Roche, S. Unpublished observations.
  • Roche, S., R. Dhan, M. D. Waterfield, and S. A. Courtneidge 1994. The catalytic subunit of phosphatidylinositol 3-kinase is a substrate for the platelet-derived growth factor receptor, but not for middle-T antigen-pp60c-src complexes. Biochem. J. 301: 703–711.
  • Roche, S., M. Koegl, V. M. Barone, M. Roussel, and S. A. Courtneidge 1995. DNA synthesis induced by some, but not all, growth factors requires Src family protein tyrosine kinases. Mol. Cell. Biol. 15: 1102–1109.
  • Rodriguez-Viciana, P., P. H. Warne, R. Dhand, B. Vanhaesebroeck, I. Gout, M. J. Fry, M. D. Waterfield, and J. Downward 1994. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370: 527–532.
  • Rodriguez-Vicinia, P., P. H. Warne, A. Khwaja, B. M. Marte, D. Pappin, P. Das, M. D. Waterfield, A. Ridley, and J. Downward 1997. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89: 457–467.
  • Rodriguez-Vicinia, P., P. H. Warne, B. Vanhaesebroeck, M. D. Waterfield, and J. Downward 1996. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 15: 2442–2451.
  • Stephens, L., A. Eguinoa, S. Corey, T. Jackson, and P. T. Hawkins 1993. Receptor stimulated accumulation of phosphatodylinositol (3,4,5)-trisphosphate by G-protein mediated pathways in human myeliod derived cells. EMBO J. 12: 2265–2273.
  • Stephens, L. R., A. Eguinoa, H. Erdjument-Bromage, M. Lui, F. Cooke, J. Coadwell, A. S. Smrcka, M. Thelen, K. Cadwallader, P. Tempst, and P. T. Hawkins 1997. The Gβγ sensitivity of a PI3K is dependent upon a tightly associated adaptor p101. Cell 89: 105–114.
  • Stokoe, D., L. R. Stephens, T. Copeland, P. R. J. Gaffney, C. B. Reese, G. F. Painter, A. B. Holmes, F. McCormick, and P. T. Hawkins 1997. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277: 567–570.
  • Stoyanov, B., S. Volinia, T. Hanck, I. Rubio, M. Loubtchenkov, D. Malek, S. Stoyanova, D. R. Vanhaesebroeck, B. Dhand, R. Nürnberg, P. Gierschik, K. Seedorf, J. J. Hsuan, M. D. Waterfield, and R. Wetzker 1995. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269: 690–693.
  • Toker, A., and L. C. Cantley 1997. Signalling through the lipid products of phosphoinositide 3-OH kinase. Nature 387: 673–676.
  • Twamley, G., B. Hall, R. Kypta, and S. A. Courtneidge 1992. Association of Fyn with the activated PDGF receptor: requirements for binding and phosphorylation. Oncogene 7: 1893–1901.
  • Ui, M., T. Okada, K. Hazeki, and O. Hazeki 1995. Wortmannin as a unique probe for an intracellular signalling protein, phosphoinositide 3-kinase. Trends Biochem. Sci. 20: 303–307.
  • Ulug, E. T., A. J. Cartwright, and S. A. Courtneidge 1992. Characterization of the interaction of polyoma middle T antigen with type 2A protein phosphatase. J. Virol. 66: 1458–1467.
  • Valius, M., and A. Kazlauskas 1993. Phospholipase C-γ1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell 73: 321–334.
  • van Corven, E. J., A. Groenink, K. Jalink, T. Eichholtz, and W. H. Moolenaar 1989. Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by Gi protein. Cell 59: 45–54.
  • Vanhaesebroeck, B., S. Leevers, G. Panayotou, and M. D. Waterfield 1997. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci. 22: 267–272.
  • Vanhaesebroeck, B., M. J. Welham, K. Kotani, R. Stein, P. H. Warne, M. J. Zvelebil, K. Higashi, S. Volinia, J. Downward, and M. D. Waterfield 1997. p110δ, a novel phosphoinositide 3-kinase in leukocytes. Proc. Natl. Acad. Sci. USA 94: 4330–4335.
  • Vlahos, C. J., W. F. Matter, K. Y. Hui, and R. F. Brown 1994. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269: 5241–5248.
  • Welsh, G. I., E. J. Foulstone, S. W. Yong, J. M. Tavare, and C. G. Proud 1994. Wortmannin inhibits the effects of insulin and serum on the activities of glycogen synthase kinase-3 and mitogen-activated protein kinase. Biochem. J. 303: 15–20.
  • White, M. A., C. Nicolette, A. Minden, A. Polverino, L. Vanaelst, M. Karin, and M. H. Wigler 1995. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80: 533–541.
  • Whitman, M., D. R. Kaplan, B. Schaffhausen, L. Cantley, and T. M. Roberts 1985. Association of phosphatidylinositol kinase activity with polyoma middle T competent for transformation. Nature 315: 239–242.
  • Yamaushi, K., K. Holt, and J. E. Pessin 1993. Phosphatidylinositol 3-kinase functions upstream of Ras and Raf in mediating insulin stimulation of c-fos transcription. J. Biol. Chem. 268: 14597–14600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.