11
Views
73
CrossRef citations to date
0
Altmetric
Cell Growth and Development

CNS1 Encodes an Essential p60/Sti1 Homolog in Saccharomyces cerevisiae That Suppresses Cyclophilin 40 Mutations and Interacts with Hsp90

, &
Pages 7344-7352 | Received 17 Jun 1998, Accepted 03 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Bohen, S. P. 1998. Genetic and biochemical analysis of p23 and ansamycin antibiotics in the function of Hsp90-dependent signaling proteins. Mol. Cell. Biol. 18: 3330–3339.
  • Bohen, S. P., and K. R. Yamamoto 1994. Modulation of steroid receptor signal transduction by heat shock proteins The biology of heat shock proteins and molecular chaperones. In: Morimoto, R. I., A. Tissieres, and C. Georgopoulos313–334Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
  • Borkovich, K., F. W. Farrelly, D. B. Finkelstein, J. Taulien, and S. Lindquist 1989. hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol. Cell. Biol. 9: 3919–3930.
  • Bose, S., T. Weikl, H. Bugl, and J. Buchner 1996. Chaperone function of Hsp90-associated proteins. Science 274: 1715–1717.
  • Botstein, D., S. C. Falco, S. E. Stewart, M. Brennan, S. Scherer, D. T. Stinchcomb, K. Struhl, and R. W. Davis 1979. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8: 17–24.
  • Caplan, A. J. 1997. Yeast molecular chaperones and the mechanism of steroid hormone action. Trends Endocrinol. Metab. 8: 271–276.
  • Cardenas, M., C. Hemenway, R. S. Muir, R. Ye, D. Fiorentino, and J. Heitman 1994. Immunophilins interact with calcineurin in the absence of exogenous immunosuppressive ligands. EMBO J. 13: 5944–5957.
  • Chang, H.-C. J., and S. Lindquist 1994. Conservation of Hsp90 macromolecular complexes in Saccharomyces cerevisiae. J. Biol. Chem. 269: 24983–24988.
  • Chang, H.-C. J., D. F. Nathan, and S. Lindquist 1997. In vivo analysis of the Hsp90 cochaperone Sti1 (p60). Mol. Cell. Biol. 17: 318–325.
  • Chen, M.-S., A. M. Silverstein, W. B. Pratt, and M. Chinkers 1996. The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant. J. Biol. Chem. 271: 32315–32320.
  • Cherry, J. M., C. Adler, C. Ball, S. Dwight, S. Chervitz, G. Juvik, T. Roe, S. Weng, and D. Botstein 1997. Saccharomyces genome database. http://genome-www.stanford.edu/Saccharomyces/October 9, 1997.
  • Cullin, C., and L. Minvielle-Sebastia 1994. Multipurpose vectors designed for the fast generation of N- or C-terminal epitope-tagged proteins. Yeast 10: 105–112.
  • Das, A. K., P. T. W. Cohen, and D. Barford 1998. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J. 17: 1192–1199.
  • Deshaies, R. J. 1995. Make it or break it: the role of ubiquitin-dependent proteolysis in cellular regulation. Trends Cell Biol. 5: 428–434.
  • Dolinski, K., R. S. Muir, M. E. Cardenas, and J. Heitman 1997. All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94: 13093–13098.
  • Duina, A. A., H. C. Chang, J. A. Marsh, S. Lindquist, and R. F. Gaber 1996. A cyclophilin function in Hsp-90 dependent signal transduction. Science 274: 1713–1715.
  • Duina, A. A., J. A. Marsh, and R. F. Gaber 1996. Identification of two cyp-40-like cyclophilins in Saccharomyces cerevisiae, one of which is required for normal growth. Yeast 12: 943–952.
  • Duina, A. A., J. A. Marsh, R. B. Kurtz, H.-C. J. Chang, S. Londquist, and R. F. Gaber 1998. The peptidyl-prolyl isomerase domain of the Cyp-40 cyclophilin 40 homolog Cpr7 is not required to support growth or glucocorticoid receptor activity in Saccharomyces cerevisiae. J. Biol. Chem. 273: 10819–10822.
  • Fang, Y., A. E. Fliss, J. Rao, and A. J. Caplan 1998. SBA1 encodes a yeast Hsp90 cochaperone that is homologous to vertebrate p23 proteins. Mol. Cell. Biol. 18: 3727–3734.
  • Fliss, A. E., Y. Fang, F. Boschelli, and A. J. Caplan 1997. Differential in vivo regulation of steroid hormone receptor activation by Cdc37p. Mol. Biol. Cell 8: 2501–2509.
  • Frangioni, J. V., and B. G. Neel 1993. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal. Biochem. 210: 179–187.
  • Freeman, B. C., D. O. Toft, and R. I. Morimoto 1996. Molecular chaperone machines: chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptor-associated protein p23. Science 274: 1718–1720.
  • Gietz, R. D., R. H. Schiestl, A. Willems, and R. A. Woods 1995. Studies on the mechanism of high efficiency transformation of intact yeast cells. Yeast 11: 355–360.
  • Gietz, R. D., and A. Sugino 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527–534.
  • Godowski, P. J., D. Picard, and K. R. Yamamoto 1988. Signal transduction and transcriptional regulation by glucocorticoid receptor-LexA fusion proteins. Science 241: 812–816.
  • Gaber, R. Personal communication.
  • Grenert, J. P., W. P. Sullivan, P. Fadden, T. A. J. Haystead, J. Clark, E. Mimnaugh, H. Krutzsch, H. J. Ochel, T. W. Schulte, E. Sausville, L. M. Neckers, and D. O. Toft 1997. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J. Biol. Chem. 272: 23843–23850.
  • Heitman, J., N. R. Movva, P. C. Hiestand, and M. N. Hall 1991. FK506-binding protein proline rotamase is a target for the immunosuppressive agent FK506 in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88: 1948–1952.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51–59.
  • Hochstrasser, M. 1996. Protein degradation or regulation: Ub the judge. Cell 84: 853–862.
  • Hoffman, C. S., and F. Winston 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267–272.
  • Kieffer, L. J., T. W. Seng, W. Li, D. G. Osterman, R. E. Handschumacher, and R. M. Bayney 1993. Cyclophilin-40, a protein with homology to the P59 component of the steroid receptor complex. J. Biol. Chem. 268: 12303–12310.
  • Kimura, Y., S. L. Rutherford, Y. Miyata, I. Yahara, B. C. Freeman, L. Yue, R. I. Morimoto, and S. Lindquist 1997. Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev. 11: 1775–1785.
  • Kominami, K.-I., N. Okura, M. Kawamura, G. N. DeMartino, C. A. Slaughter, N. Shimbara, C. H. Chung, M. Fujimuro, H. Yokosawa, Y. Shimizu, N. Tanahashi, K. Tanaka, and A. Toh-e 1997. Yeast counterparts of subunits S5a and p58 (S3) of the human 26S proteasome are encoded by two multicopy suppressors of nin1-1. Mol. Biol. Cell 8: 171–187.
  • Leverson, J. D., and S. A. Ness 1998. Point mutations in v-myb disrupt a cyclophilin-catalyzed negative regulatory mechanism. Mol. Cell 1: 203–211.
  • Lorenz, M. C., R. S. Muir, E. Lim, J. McElver, S. C. Weber, and J. Heitman 1995. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 158: 113–117.
  • Mak, P., D. P. McDonnell, N. L. Weigel, W. T. Schrader, and B. W. O’Malley 1989. Expression of functional chicken oviduct progesterone receptors in yeast (Saccharomyces cerevisiae). J. Biol. Chem. 284: 21613–21618.
  • Metzger, D., J. H. White, and P. Chambon 1988. The human oestrogen receptor functions in yeast. Nature 334: 31–36.
  • Miao, B., J. Davis, and E. A. Craig 1997. The Hsp70 family—an overview Guidebook to molecular chaperones and protein-folding catalysts. In: Gething, M.-J.3–13Oxford University Press, New York, N.Y.
  • Nicolet, C. M., and E. A. Craig 1989. Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 3638–3646.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78: 6354–6358.
  • Owens-Grillo, J. K., L. F. Stancato, K. Hoffmann, W. B. Pratt, and P. Krishna 1996. Binding of immunophilins to the 90 kDa heat shock protein (hsp90) via a tetratricopeptide repeat domain is a conserved protein interaction in plants. Biochemistry 35: 15249–15255.
  • Picard, D., B. Khursheed, M. J. Garabedian, M. G. Fortin, S. Lindquist, and K. R. Yamamoto 1990. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348: 166–168.
  • Pratt, W. B. 1993. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J. Biol. Chem. 268: 21455–21458.
  • Ratajczak, T., and A. Carrello 1996. Cyclophilin 40 (Cyp-40), mapping of its hsp90 binding domain and evidence that FKBP52 competes with Cyp-40 for hsp90 binding. J. Biol. Chem. 271: 2961–2965.
  • Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194: 281–301.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schmitt, M. E., T. A. Brown, and B. L. Trumpower 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18: 3091–3092.
  • Schneider, C., L. Sepp-Lorenzino, E. Nimmesgern, O. Ouerfelli, S. Danishefsky, N. Rosen, and F. U. Hartl 1996. Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc. Natl. Acad. Sci. USA 93: 14536–14541.
  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194: 3–21.
  • Sikorski, R. S., and P. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Sikorski, R. S., W. A. Michaud, and P. Hieter 1993. p62cdc23 of Saccharomyces cerevisiae: a nuclear tetratricopeptide repeat protein with two mutable domains. Mol. Cell. Biol. 13: 1212–1221.
  • Smith, D. B., and K. S. Johnson 1988. Single-step purification of polypeptides expressed in E. coli as fusions with glutathione S-transferase. Gene 67: 31–40.
  • Smith, D. F. 1993. Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol. Endocrinol. 7: 1418–1429.
  • Smith, D. F., L. Whitesell, S. C. Nair, S. Chen, V. Prapapanich, and R. A. Rimerman 1995. Progesterone receptor structure and function altered by geldanamycin, an Hsp90-binding agent. Mol. Cell. Biol. 15: 6804–6812.
  • Stebbins, C. E., A. A. Russo, C. Schneider, N. Rosen, F. U. Hartl, and N. P. Pavletich 1997. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89: 239–250.
  • Wach, A., A. Brachat, R. Pohlmann, and P. Philippsen 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793–1808.
  • Warth, R., P.-A. Briand, and D. Picard 1997. Functional analysis of the yeast 40 kDa cyclophilin Cyp40 and its role for viability and steroid receptor regulation. Biol. Chem. 378: 381–391.
  • Weisman, R., J. Creanor, and P. Fantes 1996. A multicopy suppressor of a cell cycle defect in S. pombe encodes a heat shock-inducible 40 kDa cyclophilin-like protein. EMBO J. 15: 447–456.
  • Whitesell, L., E. G. Mimnaugh, B. D. Costa, C. E. Myers, and L. M. Neckers 1994. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl. Acad. Sci. USA 91: 8324–8328.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.