30
Views
47
CrossRef citations to date
0
Altmetric
Cell Growth and Development

N Terminus of Sos1 Ras Exchange Factor: Critical Roles for the Dbl and Pleckstrin Homology Domains

, , , &
Pages 771-778 | Received 13 Aug 1997, Accepted 04 Nov 1997, Published online: 28 Mar 2023

REFERENCES

  • Aronheim, A., D. Engelberg, N. X. Li, N. Al-Alawi, J. Schlessinger, and M. Karin 1994. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78: 949–961.
  • Avruch, J., X. F. Zhang, and J. M. Kyriakis 1994. Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem. Sci. 19: 279–283.
  • Bar-Sagi, D. 1994. The Sos (son of sevenless) protein. Trends Endocrinol. Metab. 5: 165–169.
  • Batzer, A. G., D. Rotin, J. M. Urena, E. Y. Skolinik, and J. Schlessinger 1994. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Mol. Cell. Biol. 14: 5192–5201.
  • Bonfini, L., C. A. Karlovich, C. Dasgupta, and U. Banerjee 1992. The son of sevenless gene product—a putative activator of Ras. Science 255: 603–606.
  • Bowtell, D., P. Fu, M. Simon, and P. Senior 1992. Identification of murine homologues of the Drosophila son of sevenless gene—potential activators of ras. Proc. Natl. Acad. Sci. USA 89: 6511–6515.
  • Buday, L., and J. Downward 1993. Epidermal growth factor regulates p21(Ras) through the formation of a complex of receptor, GRB2 adapter protein, and Sos nucleotide exchange factor. Cell 73: 611–620.
  • Byrne, J. L., H. F. Paterson, and C. J. Marshall 1996. p21Ras activation by the guanine nucleotide exchange factor Sos, requires the Sos/Grb2 interaction and a second ligand-dependent signal involving the Sos N-terminus. Oncogene 13: 2055–2065.
  • Cen, H., A. G. Papageorge, W. C. Vass, K. Zhang, and D. R. Lowy 1993. Regulated and constitutive activity by CDC25(Mm) (GRF), a Ras-specific exchange factor. Mol. Cell. Biol. 13: 7718–7724.
  • Cerione, R. A., and Y. Zheng 1996. The Dbl family of oncogenes. Curr. Opin. Cell Biol. 8: 216–222.
  • Chardin, P., J. H. Camonis, N. W. Gale, L. Van Aelst, J. Schlessinger, M. H. Wigler, and D. Bar-Sagi 1993. Human sos1—a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260: 1338–1343.
  • Chen, R. H., G. S. Corbalan, and D. Bar-Sagi 1997. The role of the PH domain in the signal-dependent membrane targeting of Sos. EMBO J. 16: 1351–1359.
  • Clark, S. G., M. J. Stern, and H. R. Horvitz 1992. C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356: 340–344.
  • Crespo, P., N. Xu, J. L. Daniotti, J. Troppmair, U. R. Rapp, and J. S. Gutkind 1994. Signaling through transforming G protein-coupled receptors in NIH 3T3 cells involves c-Raf activation. Evidence for a protein kinase C-independent pathway. J. Biol. Chem. 269: 21103–21109.
  • DeClue, J. E., W. C. Vass, A. G. Papageorge, D. R. Lowy, and B. M. Willumsen 1991. Inhibition of cell growth by lovastatin is independent of ras function. Cancer Res. 51: 712–717.
  • Downward, J. 1996. Control of ras activation. Cancer Surv. 27: 87–100.
  • Egan, S. E., B. W. Giddings, M. W. Brooks, L. Buday, A. M. Sizeland, and R. A. Weinberg 1993. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363: 45–51.
  • Freshney, N. W., S. D. Goonesekera, and L. A. Feig 1997. Activation of the exchange factor Ras-GRF by calcium requires an intact Dbl homology domain. FEBS Lett. 407: 111–115.
  • Gale, N. W., S. Kaplan, E. J. Lowenstein, J. Schlessinger, and D. Bar-Sagi 1993. Grb2 mediates the EGF-Dependent activation of guanine nucleotide exchange on ras. Nature 363: 88–92.
  • Hart, M. J., A. Eva, T. Evans, S. A. Aaronson, and R. A. Cerione 1991. Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature 354: 311–314.
  • Hart, M. J., A. Eva, D. Zangrilli, S. A. Aaronson, T. Evans, R. A. Cerione, and Y. Zheng 1994. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J. Biol. Chem. 269: 62–65.
  • Herrmann, C., and N. Nassar 1996. Ras and its effectors. Prog. Biophys. Mol. Biol. 66: 1–41.
  • Karlovich, C. A., L. Bonfini, L. McCollam, R. D. Rogge, A. Daga, M. P. Czech, and U. Banerjee 1995. In vivo functional analysis of the Ras exchange factor son of sevenless. Science 268: 576–579.
  • Katz, M. E., and F. McCormick 1997. Signal transduction from multiple Ras effectors. Curr. Opin. Genet. Dev. 7: 75–79.
  • Li, N., A. Batzer, R. Daly, V. Yajnik, E. Skolnik, P. Chardin, D. Bar-Sagi, B. Margolis, and J. Schlessinger 1993. Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to ras signalling. Nature 363: 85–88.
  • Li, T., S. Tsukada, A. Satterthwaite, M. H. Havlik, H. Park, K. Takatsu, and O. N. Witte 1995. Activation of Bruton’s tyrosine kinase (BTK) by a point mutation in its pleckstrin homology (PH) domain. Immunity 2: 451–460.
  • Lowy, D. R., and B. M. Willumsen 1993. Function and regulation of Ras. Annu. Rev. Biochem. 62: 851–891.
  • Marshall, C. J. 1996. Ras effectors. Curr. Opin. Cell Biol. 8: 197–204.
  • McCollam, L., L. Bonfini, C. A. Karlovich, B. R. Conway, L. M. Kozma, U. Banerjee, and M. P. Czech 1995. Functional roles for the pleckstrin and Dbl homology regions in the Ras exchange factor Son-of-sevenless. J. Biol. Chem. 270: 15954–15957.
  • Migliaccio, E., S. Mele, A. E. Salcini, G. Pelicci, K. M. Lai, F. G. Superti, T. Pawson, F. P. Di, L. Lanfrancone, and P. G. Pelicci 1997. Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J. 16: 706–716.
  • Nielsen, K. H., A. G. Papageorge, W. C. Vass, B. M. Willumsen, and D. R. Lowy 1997. The Ras-specific exchange factors mouse Sos1 (mSos1) and mSos2 are regulated differently: mSos2 contains ubiquitination signals absent in mSos1. Mol. Cell. Biol. 17: 7132–7138.
  • Niman, H. L., R. A. Houghten, L. E. Walker, R. A. Reisfeld, I. A. Wilson, J. M. Hogle, and R. A. Lernor 1983. Generation of protein-reactive antibodies by short peptides is an event of high frequency: implications for the structural basis of immune recognition. Proc. Natl. Acad. Sci. USA 80: 4949–4953.
  • Paterson, H. F., J. W. Savopoulos, O. Perisic, R. Cheung, M. V. Ellis, R. L. Williams, and M. Katan 1995. Phospholipase C delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem. J. 312: 661–666.
  • Pitcher, J. A., K. Touhara, E. S. Payner, and R. J. Lefkowitz 1995. Pleckstrin homology domain-mediated membrane association and activation of the β-adreergic receptor kinase requires coordinate interaction wiht Gβγ subunits and lipid. J. Biol. Chem. 270: 11707–11710.
  • Quilliam, L. A., S. Y. Huff, K. M. Rabun, W. Wei, W. Park, D. Broek, and C. J. Der 1994. Membrane-targeting potentiates guanine nucleotide exchange factor CDC25 and SOS1 activation of Ras transforming activity. Proc. Natl. Acad. Sci. USA 91: 8512–8516.
  • Shaw, G. 1996. The pleckstrin homology domain: an intriguing multifunctional protein module. Bioessays 18: 35–46.
  • Simon, M. A., D. D. L. Bowtell, G. S. Dodson, T. R. Laverty, and G. M. Rubin 1991. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67: 701–716.
  • Uetsuki, T., A. Naito, S. Nagata, and Y. Kaziro 1989. Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-1α. J. Biol. Chem. 264: 5791–5798.
  • Vihinen, M., M. J. Zvelebil, Q. Zhu, R. A. Brooimans, H. D. Ochs, B. J. Zegers, L. Nilsson, M. D. Waterfield, and C. I. Smith 1995. Structural basis for pleckstrin homology domain mutations in X-linked agammaglobulinemia. Biochemistry 34: 1475–1481.
  • Wang, W., E. M. Fisher, Q. Jia, J. M. Dunn, E. Porfiri, J. Downward, and S. E. Egan 1995. The Grb2 binding domain of mSos1 is not required for downstream signal transduction. Nat. Genet. 10: 294–300.
  • Willumsen, B. M., W. C. Vass, T. J. Velu, A. G. Papageorge, J. Schiller, and D. R. Lowy 1991. The BPV E5 oncogene can cooperate with ras: identification of a p21 amino acid segment required for transformation by c-rasH but not v-rasH. Mol. Cell. Biol. 9: 6026–6033.
  • Yenush, L., K. J. Makati, H. J. Smith, O. Ishibashi, M. J. Myers, and M. F. White 1996. The pleckstrin homology domain is the principal link between the insulin receptor and IRS-1. J. Biol. Chem. 271: 24300–24306.
  • Zhang, K., A. G. Papageorge, and D. R. Lowy 1992. Mechanistic aspects of signalling through Ras in NIH 3T3 cells. Science 257: 671–674.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.