13
Views
35
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

GTP Hydrolysis Is Not Important for Ypt1 GTPase Function in Vesicular Transport

, , &
Pages 827-838 | Received 15 Sep 1997, Accepted 05 Nov 1997, Published online: 28 Mar 2023

REFERENCES

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watson 1994. Molecular biology of the cell 643–644Garland Publishing, Inc., New York, N.Y.
  • Alexandrov, K., H. Horiuchi, O. Steele-Mortimer, M. Seabra, and M. Zerial 1994. Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes. EMBO J. 13: 5262–5273.
  • Antebi, A., and G. Fink 1992. The yeast Ca2+-ATPase homologue, PMRI, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol. Biol. Cell 3: 633–654.
  • Araki, S., A. Kikuchi, Y. Hata, M. Isomura, and Y. Takai 1990. Regulation of reversible binding of smg p25A, a ras p21-like GTP-binding protein, to synaptic plasma membranes and vesicles by its specific regulatory protein, GDP dissociation inhibitor. J. Biol. Chem. 256: 13007–13015.
  • Bacon, R. A., A. Salminen, H. Ruohola, P. Novick, and S. Ferro-Novick 1989. The GTP-binding protein Ypt1 is required for transport in vitro: the Golgi apparatus is defective in ypt1 mutants. J. Cell Biol. 109: 1015–1022.
  • Baker, D., L. Wuestehube, R. Schekman, D. Botstein, and N. Segev 1990. GTP-binding Ypt1 protein and Ca2+ function independently in a cell-free transport reaction. Proc. Natl. Acad. Sci. USA 87: 355–359.
  • Barbieri, M. A., L. Guangpu, L. Mayorga, and P. Stahl 1996. Characterization of Rab5:Q79L-stimulated endosome fusion. Arch. Biochem. Biophys. 326: 64–72.
  • Becker, D. M., and L. Guarente 1991. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 194: 182–187.
  • Bordier, C. 1981. Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 256: 1604–1607.
  • Bourne, H. R. 1988. Do GTPases direct membrane traffic in secretion? Cell 53: 669–671.
  • Bourne, H. R., D. A. Sanders, and F. McCormick 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348: 125–132.
  • Brandt, D., T. Asano, S. Pedersen, and E. Ross 1983. Reconstitution of catecholamine-stimulated guanosinetriphosphatase activity. Biochemistry 22: 4357–4362.
  • Broek, D., T. Toda, T. Michaeli, L. Levin, C. Birchmeier, M. Zoller, S. Powers, and M. Wigler 1987. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48: 789–799.
  • Brondyk, W. H., C. J. McKiernan, E. S. Burstein, and I. G. Macara 1993. Mutants of Rab3A analogous to oncogenic Ras mutants. J. Biol. Chem. 268: 9410–9415.
  • Burnette, W. N. 1981. “Western Blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112: 195–203.
  • Burstein, E., K. Linko-Stentz, Z. Lu, and I. Macara 1991. Regulation of the GTPase activity of the ras-like protein p25rab3A. J. Biol. Chem. 266: 2689–2692.
  • Burstein, E. S., and I. G. Macara 1992. Characterization of a guanine nucleotide-releasing factor and a GTPase-activating protein that are specific for the ras-related protein p25rab3A. Proc. Natl. Acad. Sci. USA 89: 1154–1158.
  • Burton, J., D. Roberts, M. Montaldi, P. Novick, and P. De Camilli 1993. A mammalian guanine-nucleotide-releasing protein enhances function of yeast secretory protein Sec4. Nature 361: 464–467.
  • Der, C., T. Finkel, and G. Cooper 1986. Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 44: 167–176.
  • Dirac-Svejstrup, A., T. Sumizawa, and S. Pfeffer 1997. Identification of a GDI displacement factor that releases endosome Rab GTPases from Rab-GDI. EMBO J. 16: 465–472.
  • Dower, W. J., J. F. Miller, and C. W. Ragsdale 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16: 6127–6145.
  • Ferro-Novick, S., and R. Jahn 1994. Vesicle fusion from yeast to man. Nature 370: 191–193.
  • Franzusoff, A., K. Redding, J. Crosby, S. R. Fuller, and R. Schekman 1989. Localization of components involved in protein transport and processing through the yeast Golgi apparatus. J. Cell Biol. 112: 27–37.
  • Frech, M., T. Darden, L. Pedersen, C. Foley, P. Charifson, M. Anderson, and A. Wittinghofer 1994. Role of glutamine-61 in the hydrolysis of GTP by p21 H-ras: an experimental and theoretical study. Biochemistry 33: 3237–3244.
  • Fukui, K., T. Sasaki, K. Imazumi, Y. Matsuura, H. Nakanishi, and Y. Takai 1997. Isolation and characterization of a GTPase activating protein specific for the Rab3 subfamily of small G proteins. J. Biol. Chem. 272: 4655–4658.
  • Garrett, M. D., J. E. Zahner, C. M. Cheney, and P. J. Novick 1994. GDI1 encodes a GDP dissociation inhibitor that plays an essential role in the yeast secretory pathway. EMBO J. 13: 1718–1728.
  • Gietz, D., A. St. Jean, R. Woods, and R. Schiestl 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20: 1625.
  • Goud, B., and M. McCaffrey 1991. Small GTP-binding proteins and their role in transport. Curr. Opin. Cell Biol. 3: 626–633.
  • Graham, T., M. Seeger, G. Payne, V. MacKay, and S. Emr 1994. Clathrin-dependent localization of alpha1,3 mannosyltransferase to the Golgi complex in Saccharomyces cerevisiae. J. Cell Biol. 127: 667–678.
  • Groesch, M., G. Rossi, and S. Ferro-Novick 1992. Reconstitution of endoplasmic reticulum to Golgi transport in yeast: in vitro assay to characterize secretory mutants and functional transport vesicles. Methods Enzymol. 219: 137–153.
  • Haney, S. A., and J. R. Broach 1994. Cdc25p, the guanine nucleotide exchange factor for the Ras proteins of Saccharomyces cerevisiae, promotes exchange by stabilizing ras in a nucleotide-free state. J. Biol. Chem. 269: 16541–16548.
  • Harris, S., and G. Waters 1996. Localization of a yeast early Golgi mannosyltransferase, Och1p, involves retrograde transport. J. Cell Biol. 132: 985–998.
  • Higashijima, T., K. Ferguson, M. Smigel, and A. Gilman 1987. The effect of GTP and Mg++ on the GTPase activity and the fluorescent properties of Go. J. Biol. Chem. 262: 757–761.
  • Hoffenberg, S., J. Sanford, S. Liu, D. S. Daniel, M. Tuvin, B. Knoll, M. Wessling-Resnick, and B. Dickey 1995. Biochemical and functional characterization of a recombinant GTPase, Rab5, and two of its mutants. J. Biol. Chem. 270: 5048–5056.
  • Hoffman, C. S., and F. Winston 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267–272.
  • Hwang, Y.-W., A. Sanchez, and D. L. Miller 1989. Mutagenesis of bacterial elongation factor Tu at lysine 136. J. Biol. Chem. 264: 8304–8309.
  • Hwang, Y. W., J. M. Zhong, P. Poullet, and A. Parmeggiani 1993. Inhibition of SDC25C-domain-induced guanine-nucleotide exchange by guanine ring binding domain mutants of v-H-ras. J. Biol. Chem. 268: 24692–24698.
  • Jedd, G., J. Mulholland, and N. Segev 1997. Two new Ypt GTPases are required for exit from the yeast trans-Golgi compartment. J. Cell Biol. 137: 563–580.
  • Jedd, G., C. J. Richardson, R. J. Litt, and N. Segev 1995. The Ypt1 GTPase is essential for the first two steps of the yeast secretory pathway. J. Cell Biol. 131: 583–590.
  • Jena, B. P., P. Brennwald, M. D. Garrett, P. Novick, and J. D. Jamieson 1992. Distinct and specific GAP activities in rat pancreas act on the yeast GTP-binding proteins Ypt1 and Sec4. FEBS Lett. 309: 5–9.
  • Johnston, M., and R. W. Davis 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 1440–1448.
  • Jones, S., R. J. Litt, C. J. Richardson, and N. Segev 1995. Requirement of nucleotide exchange for Ypt1 GTPase mediated protein transport. J. Cell Biol. 130: 1051–1061.
  • Jones, S., and N. Segev. Unpublished observations.
  • Kaiser, C. A., and R. Schekman 1990. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61: 723–733.
  • Krengel, U., I. Schlichting, A. Scherer, R. Schumann, M. French, J. John, W. Kabsch, E. Pai, and A. Wittinghofer 1990. Three-dimensional structures of the H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell 62: 539–548.
  • Lai, C.-C., M. Boguski, D. Broek, and S. Powers 1993. Influence of guanine nucleotides on complex formation between Ras and CDC25 proteins. Mol. Cell. Biol. 13: 1345–1352.
  • Lamarche, N., N. Tapon, L. Stowers, P. Burbelo, P. Aspenström, T. Bridges, J. Chant, and A. Hall 1996. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87: 519–529.
  • Li, B., and J. R. Warner 1996. Mutation of the Rab6 homologue of Saccharomyces cerevisiae, YPT6, inhibits both early Golgi function and ribosome biosynthesis. J. Biol. Chem. 271: 16813–16819.
  • Lian, J. P., S. Stone, Y. Jiang, P. Lyons, and S. Ferro-Novick 1994. Ypt1p implicated in v-SNARE activation. Nature 372: 698–701.
  • Litt, R. 1997. The role of the guanine nucleotide exchange factor for Ypt1 GTPase in yeast protein transport. Ph.D. thesis. The University of Chicago, Chicago, Ill.
  • Martinez, O., C. Antony, G. Pehau-Arnaudet, E. Berger, J. Salamero, and B. Goud 1997. GTP-bound forms of rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 94: 1828–1833.
  • Martinez, O., A. Schmidt, J. Salamero, B. Hoflack, M. Roa, and B. Goud 1994. The small GTP-binding protein rab6 functions in intra-Golgi transport. J. Cell Biol. 127: 1575–1588.
  • Mayer, A., and W. Wickner 1997. Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J. Cell Biol. 136: 307–317.
  • McCormick, F. 1990. The world according to GAP. Oncogene 5: 1281–1283.
  • Milburn, M., L. Tong, A. DeVos, A. Brünger, A. Yamaizumi, S. Nishimura, and S. Kim 1990. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247: 939–945.
  • Molenaar, C. M. T., R. Prange, and D. Gallwitz 1988. A carboxyl-terminal cysteine residue is required for palmitic acid binding and biological activity of the ras-related yeast YPT1 protein. EMBO J. 7: 971–976.
  • Mosteller, R., J. Han, and D. Broek 1994. Identification of residues of the H-Ras protein critical for functional interaction with guanine nucleotide exchange factors. Mol. Cell. Biol. 14: 1104–1112.
  • Nakayama, K., T. Nagasu, Y. Shimma, J. Kuromitsu, and Y. Jigami 1992. OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J. 11: 2511–2519.
  • Nothwehr, S. F., E. Conibear, and T. H. Stevens 1995. Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane. J. Cell Biol. 132: 985–998.
  • Novick, P., and P. Brennwald 1993. Friends and family: the role of the Rab GTPases in vesicular traffic. Cell 75: 597–601.
  • Novick, P., S. Ferro, and R. Schekman 1981. Order of events in the yeast secretory pathway. Cell 25: 461–469.
  • Novick, P., C. Field, and R. Schekman 1980. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21: 205–215.
  • Novick, P., and M. Zerial 1997. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9: 496–504.
  • Ossig, R., W. Laufer, H. D. Schmitt, and D. Gallwitz 1995. Functionality and specific membrane localization of transport GTPases carrying C-terminal membrane anchors of synaptobrevin-like proteins. EMBO J. 14: 3645–3653.
  • Pai, E., U. Krengel, G. Petsko, R. Goody, W. Kabasch, and A. Wittinghofer 1990. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9: 2351–2359.
  • Palade, G. 1975. Intracellular aspects of the process of protein synthesis. Science 189: 347–358.
  • Pfeffer, S. 1992. GTP-binding proteins in intracellular transport. Trends Cell Biol. 2: 41–46.
  • Pfeffer, S. R., A. B. Dirac-Svejstrup, and T. Soldati 1995. Rab GDP dissociation inhibitor: putting rab GTPases in the right place. J. Biol. Chem. 270: 17057–17059.
  • Powers, S., E. Gonzales, T. Christensen, J. Cubert, and D. Broek 1991. Functional cloning of BUD5, a CDC25-related gene from S. cerevisiae that can suppress a dominant-negative RAS2 mutant. Cell 65: 1225–1231.
  • Powers, S., K. O’Neill, and M. Wigler 1989. Dominant yeast and mammalian RAS mutants that interfere with the CDC25-dependent activation of wild-type RAS in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 390–395.
  • Preuss, D., J. Mulholland, A. Franzusoff, N. Segev, and D. Botstein 1992. Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol. Biol. Cell 3: 789–803.
  • Pringle, J. R., R. A. Preston, A. E. M. Adams, T. Stearns, D. Drubin, B. K. Haarer, and E. Jones 1989. Fluorescence microscopy methods for yeast. Methods Cell Biol. 31: 357–435.
  • Redding, K., C. Holcomb, and S. R. Fuller 1991. Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae. J. Cell Biol. 113: 527–538.
  • Rexach, M. F., and R. W. Schekman 1991. Distinct biochemical requirements for the budding, targeting, and fusion of ER-derived transport vesicles. J. Cell Biol. 114: 219–229.
  • Richardson, C., S. Jones, R. Litt, and N. Segev. Unpublished data.
  • Richardson, C., and N. Segev. Unpublished data.
  • Rose, M., F. Winston, and P. Heiter 1988. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Rothman, J. E. 1994. Mechanisms of intracellular protein transport. Nature 372: 55–63.
  • Rybin, V., O. Ullrich, M. Rubino, K. Alexandrov, I. Simon, M. Seabra, R. Goody, and M. Zerial 1996. GTPase activity of Rab5 acts as a timer for endocytic membrane fusion. Nature 383: 266–269.
  • Salminen, A., and P. Novick 1987. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49: 527–538.
  • Sanford, J., L. Foster, Z. Kapadia, and M. Wessling-Resnick 1995. Analysis of the stoichiometry of Rab protein prenylation. Anal. Biochem. 224: 547–556.
  • Sanford, J., Y. Pan, and M. Wessling-Resnick 1993. Prenylation of Rab5 is dependent on guanine nucleotide binding. J. Biol. Chem. 268: 23773–23776.
  • Scheffzek, K., M. R. Ahmadian, W. Kabsch, L. Wiesmüller, A. Lautwein, F. Schmitz, and A. Wittinghofer 1997. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic ras mutants. Science 277: 333–338.
  • Schmitt, H. D., P. Wagner, E. Pfaff, and D. Gallwitz 1986. The ras-related YPT1 gene product in yeast: a GTP-binding protein that might be involved in microtubule organization. Cell 47: 401–412.
  • Schroder, S., F. Schimmoller, B. Singer-Kruger, and H. Riezman 1995. The Golgi-localization of yeast Emp47p depends on its di-lysine motif but is not affected by the ret1-1 mutation in α-COP. J. Cell Biol. 131: 895–912.
  • Seabra, M. 1996. Nucleotide dependence of Rab geranylgeranylation. J. Biol. Chem. 271: 14398–14404.
  • Segev, N. 1991. Mediation of the attachment or fusion step in vesicular transport by the GTP-binding Ypt1 protein. Science 252: 1553–1556.
  • Segev, N., and D. Botstein 1987. The ras-like yeast YPT1 gene is itself essential for growth, sporulation, and starvation response. Mol. Cell. Biol. 7: 2367–2377.
  • Segev, N., J. Mulholland, and D. Botstein 1988. The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell 52: 915–924.
  • Sikorski, R. S., and P. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 19: 19–27.
  • Søgarrd, M., K. Tani, R. R. Ye, S. Geromanos, P. Tempst, T. Kirchhausen, J. E. Rothman, and T. Söllner 1994. A Rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78: 937–948.
  • Soldati, T., M. A. Reiderer, and S. R. Pfeffer 1993. Rab GDI: a solubilizing and recycling factor for rab9 protein. Mol. Biol. Cell 4: 425–434.
  • Soldati, T., A. D. Shapiro, A. B. D. Svejstrup, and S. R. Pfeffer 1994. Membrane targetting of the small GTPase Rab9 is accompanied by nucleotide exchange. Nature 369: 76–78.
  • Stenmark, H., R. G. Parton, O. Steele-Mortimer, A. Lütke, J. Gruenberg, and M. Zerial 1994. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13: 1287–1296.
  • Strom, M., P. Vollmer, T. J. Tan, and D. Gallwitz 1993. A yeast GTPase-activating protein that interacts specifically with a member of the Ypt/Rab family. Nature 361: 736–739.
  • Tan, T. J., P. Vollmer, and D. Gallwitz 1991. Identification and partial purification of GTPase-activating proteins from yeast and mammalian cells that preferentially act on Ypt1/Rab1 proteins. FEBS Lett. 291: 322–326.
  • Tisdale, E. J., J. R. Bourne, R. Khosravi-Far, C. J. Der, and W. E. Balch 1992. GTP-binding mutants of Rab1 and Rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J. Cell Biol. 119: 749–761.
  • Trahey, M., and F. McCormick 1987. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238: 542–545.
  • Ullrich, O., H. Horiuchi, C. Bucci, and M. Zerial 1994. Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature 368: 157–160.
  • Vollmer, P., and D. Gallwitz 1995. High expression cloning, purification, and assay of Ypt-GTPase-activating proteins. Methods Enzymol. 257: 118–128.
  • Wada, M., H. Nakanishi, A. Satoh, H. Hirano, H. Obaishi, Y. Matsuura, and Y. Takai 1997. Isolation and characterization of a GDP/GTP exchange protein specific for the Rab3 subfamily small G proteins. J. Biol. Chem. 272: 3875–3878.
  • Wagner, P., C. M. T. Molenaar, A. J. G. Rauh, R. Brokel, H. D. Schmitt, and D. Gallwitz 1987. Biochemical properties of the ras-related YPT protein in yeast: a mutational analysis. EMBO J. 6: 2373–2379.
  • Walch-Solimena, C., R. Collins, and P. Novick 1997. Sec2 mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J. Cell Biol. 137: 1495–1509.
  • Walworth, N. C., P. Brennwald, A. K. Kabcenell, M. Garrett, and P. J. Novick 1992. Hydrolysis of GTP by Sec4 protein plays an important role in vesicular transport and is stimulated by a GTPase-activating protein in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 2017–2028.
  • Walworth, N. C., B. Goud, A. K. Kabcenell, and P. J. Novick 1989. Mutational analysis of SEC4 suggests a cyclical mechanism for the regulation of vesicular traffic. EMBO J. 8: 1685–1693.
  • Warner, J. 1991. Labeling of RNA and phosphoproteins in Saccharomyces cerevisiae Guide to yeast genetics and molecular biology. In: Guthrie, C., and G. Fink423–424Academic Press, Inc., San Diego, Calif.
  • Wichmann, H., I. Hengst, and D. Gallwitz 1992. Endocytosis in yeast: evidence for the involvement of a small GTP binding protein (Ypt7). Cell 71: 1131–1142.
  • Wu, S., K. Zeng, I. Wilson, and W. Balch 1996. Structural insights into the function of the Rab GDI superfamily. Trends Biochem. Sci. 21: 472–476.
  • Xiao, G., F. Shoarinejad, F. Jin, E. Golemis, and R. Yeung 1997. The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J. Biol. Chem. 272: 6097–6100.
  • Zerial, M., and H. Stenmark 1993. Rab GTPases in vesicular transport. Curr. Opin. Cell Biol. 5: 613–620.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.