12
Views
124
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The AML1-MTG8 Leukemic Fusion Protein Forms a Complex with a Novel Member of the MTG8(ETO/CDR) Family, MTGR1

, , , , , , , & show all
Pages 846-858 | Received 18 Aug 1997, Accepted 09 Nov 1997, Published online: 28 Mar 2023

REFERENCES

  • Chou, P. Y., and G. D. Fasman 1978. Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. Relat. Areas Mol. Biol. 47: 45–148.
  • Daga, A., J. E. Tighe, and F. Calabi 1992. Leukaemia/Drosophila homology. Nature 356: 484.
  • Dickstein, R., Z. Sharleen, and R. Tjian 1996. Human TAFII105 is a cell type specific TFIID subunit related to hTAF130. Cell 87: 137–146.
  • Erickson, P., J. Gao, K. S. Chang, T. Look, E. Whisenant, S. Raimondi, R. Lasher, J. Trujilo, J. Rowley, and H. Drabkin 1992. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 80: 1825–1831.
  • Erickson, P. F., M. Robinson, G. Owens, and H. A. Drabkin 1994. The ETO portion of acute myeloid leukemia t(8;21) fusion transcript encodes a highly evolutionarily conserved, putative transcription factor. Cancer Res. 54: 1782–1786.
  • Erickson, P. F., G. Dessev, R. S. Lasher, G. Philips, M. Robinson, and H. A. Drabkin 1996. ETO and AML1 phosphoproteins are expressed in CD34+ hematopoietic progenitors: implications for t(8;21) leukemogenesis and monitoring residual disease. Blood 88: 1813–1823.
  • Feinstein, P. G., K. Kornfeld, D. S. Hogness, and R. S. Mann 1995. Identification of homeotic target genes in Drosophila melanogaster including nervy, a proto-oncogene homologue. Genetics 140: 573–586.
  • Frank, R., J. Zhang, S. Meyers, S. W. Hiebert, and S. D. Nimer 1995. The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 11: 2667–2674.
  • Garnier, J., D. J. Osguthorpe, and B. Robson 1978. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular mproteins. J. Mol. Biol. 120: 97–120.
  • Golub, T. R., G. F. Barker, S. K. Bohlander, S. W. Hiebert, D. C. Ward, P. Brayward, E. Morgan, S. C. Raimondi, J. D. Rowley, and D. G. Gilliland 1995. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 92: 4917–4921.
  • Gross, C. T., and W. McGinnis 1996. DEAF-1, a novel protein that binds an essential region in a Deformed response element. EMBO J. 15: 1961–1970.
  • Hoey, T., R. O. J. Weinzieri, G. Gill, J.-L. Chen, B. D. Dynlacht, and R. Tjian 1993. Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72: 247–260.
  • Kagoshima, H., K. Shigesada, M. Satake, Y. Ito, H. Miyoshi, M. Ohki, M. Pepling, and J. P. Gergen 1993. The runt domain identifies a new family of heteromeric transcriptional regulators. Trends Genet. 9: 338–341.
  • Kania, M. A., A. S. Bonner, J. B. Duffy, and J. P. Gergen 1990. The Drosophila segmentation gene runt encodes a novel nuclear regulatory protein that is also expressed in the developing nervous system. Genes Dev. 4: 1701–1713.
  • Karin, M., Z. Liu, and E. Zandi 1997. AP-1 function and regulation. Curr. Opin. Cell Biol. 9: 240–246.
  • Kinashi, T., H. L. Kwang, M. Ogawa, K. Tohyama, K. Tashiro, R. Fukunaga, S. Nagata, and T. Honjo 1991. Premature expression of the macrophage-colony stimulating factor receptor on a multipotential stem cell line does not alter differentiation lineages controlled by stromal cells used for coculture. J. Exp. Med. 173: 1267–1279.
  • Kitabayashi, I., Z. Kawakami, R. Chiu, K. Ozawa, T. Matsuoka, S. Toyoshima, T. Umesono, R. M. Evans, G. Gachelin, and K. Yokoyama 1992. Transcriptional regulation of the c-jun gene by retinoic acid and E1A during differentiation of F9 cells. EMBO J. 11: 167–175.
  • Kitabayashi, I., R. Eckner, Z. Arany, R. Chiu, G. Gachelin, D. M. Livingstone, and K. Yokoyama 1995. Phosphorylation of the adenovirus E1A-associated 300 kDa protein in response to retinoic acid and E1A during the differentiation of F9 cells. EMBO J. 14: 3496–3509.
  • Kitabayashi, I., et al. Unpublished data.
  • Kozu, T., H. Miyoshi, K. Shimizu, N. Maseki, Y. Kaneko, H. Asou, N. Kamada, and M. Ohki 1993. Junctions of AML1/MTG8(ETO) fusion are constant in t(8;21) acute myeloid leukemia detected by reverse transcription polymerase chain reaction. Blood 82: 1270–1276.
  • Lenny, N., S. Meyers, and S. W. Hiebert 1995. Functional domains of the t(8;21) fusion protein, AML1/ETO. Oncogene 11: 1761–1769.
  • Levanon, D., V. Negreanu, Y. Bernstein, I. Bar-Am, L. Avivi, and Y. Groner 1994. AML1, AML2 and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics 23: 425–432.
  • Liu, P., S. A. Tarle, A. Hajra, D. F. Claxton, P. Marlton, M. Freedman, M. J. Siciliano, and F. S. Collins 1993. Fusion between transcription factor CBFβ/PEBP2β and a myosin heavy chain in acute myeloid leukemia. Science 261: 1041–1044.
  • Mangelsdorf, D. J., C. Thummel, M. Beato, P. Herrlich, G. Schutz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and R. M. Evans 1995. The nuclear receptor superfamily: the second decade. Cell 83: 835–839.
  • Meyers, S., J. R. Dowing, and S. W. Hiebert 1993. Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol. Cell. Biol. 13: 6336–6345.
  • Meyers, S., N. Lenny, and S. W. Hiebert 1995. The t(8;21) fusion protein interferes with AML 1B-dependent transcriptional activation. Mol. Cell. Biol. 15: 1974–1982.
  • Miller, A. D., D. G. Miller, J. V. Garcia, and C. M. Lynch 1993. Use of retroviral vectors for gene transfer and expression. Methods Enzymol. 217: 581–599.
  • Mitani, K., S. Ogawa, T. Tanaka, H. Miyoshi, M. Kurokawa, H. Mano, Y. Yazaki, M. Ohki, and H. Hirai 1994. Generation of the AML1-Evi-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J. 13: 504–510.
  • Miyoshi, H., K. Shimizu, T. Kozu, N. Maseki, Y. Kaneko, and M. Ohki 1991. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. USA 88: 10431–10434.
  • Miyoshi, H., T. Kozu, K. Shimizu, K. Enomoto, N. Maseki, Y. Kaneko, N. Kamada, and M. Ohki 1993. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J. 12: 2715–2721.
  • Miyoshi, H., M. Ohira, K. Shimizu, K. Mitani, H. Hirai, T. Imai, K. Yokoyama, E. Soeda, and M. Ohki 1995. Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res. 23: 2762–2769.
  • Morohoshi, F., et al. Unpublished data.
  • Niki, M., H. Okada, H. Takano, J. Kuno, K. Tani, H. Hibino, S. Asano, Y. Ito, M. Satake, and T. Noda 1997. Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, polyomavirus enhancer binding protein 2/core binding factor. Proc. Natl. Acad. Sci. USA 94: 5697–5702.
  • Nisson, P. E., P. C. Watkins, and N. Sacchi 1992. Transcriptionally active chimeric gene derived from the fusion of the AML1 gene and a novel gene on chromosome 8 in t(8;21) leukemic cells. Cancer Genet. Cytogenet. 63: 81–88.
  • Nomura, N., N. Miyajima, T. Sazuka, A. Tanaka, Y. Kawarabayashi, S. Sato, T. Nagase, N. Seki, K. Ishikawa, and S. Tabata 1994. Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001–KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1. DNA Res. 1: 27–35.
  • Nuchprayoon, I., S. Meyers, L. M. Scott, J. Suzow, S. Hiebert, and A. D. Friedman 1994. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2β/CBFβ proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol. Cell. Biol. 14: 5558–5568.
  • Nucifora, G., C. R. Begy, P. Erickson, H. A. Drabkin, and J. D. Rowley 1993. The 3;21 translocation in myelodysplasia results in a fusion transcript, the AML1 gene and the gene for EAP, a highly conserved protein associated with Epstein-Barr virus small RNA EBER 1. Proc. Natl. Acad. Sci. USA 90: 7784–7788.
  • Nucifora, G., C. R. Begy, H. Kobayashi, D. Roulston, D. Claxton, J. Pedersen-Bjergaad, E. Parganas, J. N. Ihle, and J. D. Rowley 1994. Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc. Natl. Acad. Sci. USA 91: 4004–4008.
  • Ogawa, E., M. Inuzuka, M. Maruyama, M. Satake, M. Naito-Fujimoto, Y. Ito, and K. Shigesada 1993. Molecular cloning and characterization of PEBP2β, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2. Virology 194: 314–331.
  • Ogawa, E., M. Maruyama, H. Kagoshima, M. Inuzuka, J. Lu, M. Satake, K. Shigesada, and Y. Ito 1993. PEBP2/PEA2 represents a family of transcription factors homologous to the Drosophila runt gene and the human AML1 gene. Proc. Natl. Acad. Sci. USA 90: 6859–6863.
  • Okuda, T., J. van Deusen, S. W. Hiebert, G. Grosveld, and J. R. Downing 1996. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330.
  • Owens, G. P., W. E. Hahn, and J. J. Cohen 1991. Identification of mRNAs associated with programmed cell death in immature thymocytes. Mol. Cell. Biol. 11: 4177–4188.
  • Parry, D. A. D. 1982. Coiled-coils in α-helix containing proteins: analysis of the residue types within the heptad repeat and the use of these data in the prediction of coiled-coils in other proteins. Biosci. Rep. 2: 1017–1024.
  • Pear, W. S., G. P. Nolan, M. L. Scott, and D. Baltimore 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90: 8392–8396.
  • Prosser, H. M., D. Wotton, A. Gegonne, J. Ghysdael, S. Wang, N. A. Speck, and M. J. Owen 1992. A phorbol ester response element within the human T-cell receptor β-chain enhancer. Proc. Natl. Acad. Sci. USA 89: 9934–9938.
  • Rabbitts, T. H. 1994. Chromosomal translocations in human cancer. Nature 372: 143–149.
  • Redondo, J. M., J. L. Pfohl, C. Hernandez-Munain, S. Wang, N. A. Speck, and M. S. Krangel 1992. Indistinguishable nuclear factor binding to functional core sites of the T-cell receptor δ and murine leukemia virus enhancers. Mol. Cell. Biol. 12: 4817–4823.
  • Romana, S. P., M. Mauchauffe, M. Le Coniat, I. Chumakov, D. Le Paslier, R. Berger, and O. A. Bernard 1995. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 85: 3662–3670.
  • Sasaki, K., H. Yagi, R. T. Bronson, K. Tominaga, T. Matsunashi, K. Deguchi, Y. Tani, T. Kishimoto, and T. Komori 1996. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc. Natl. Acad. Sci. USA 93: 12359–12363.
  • Schiffer, M., and A. B. Edmundson 1967. Use of helical wheels to present the structures of proteins and to identify segments with helical potential. Biophys. J. 7: 121–135.
  • Shoemaker, S. G., R. Hromas, and K. Kaushansky 1990. Transcriptional regulation of interleukin 3 gene expression in T lymphocytes. Proc. Natl. Acad. Sci. USA 87: 9650–9654.
  • Takahashi, A., M. Satake, Y. Yamaguchi-Iwai, S. C. Bae, J. Lu, M. Maruyama, Y. M. Zhang, H. Oka, N. Arai, K. Arai, and Y. Ito 1995. Positive and negative regulation of granulocyte macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. Blood 86: 607–616.
  • Tanaka, T., K. Tanaka, S. Ogawa, M. Kurokawa, K. Mitani, J. Nishida, J. Shibata, Y. Yazaki, and H. Hirai 1995. An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J. 14: 341–350.
  • Tanese, N., D. Saluja, M. F. Vassallo, J.-L. Chen, and A. Admon 1996. Molecular cloning and analysis of two subunits of the human TFIID complex: hTAFII130 and hTAFII100. Proc. Natl. Acad. Sci. USA 93: 13611–13616.
  • Wang, Q., T. Stacy, M. Binder, M. Marin-Padilla, A. H. Sharpe, and N. A. Speck 1996. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. USA 93: 3444–3449.
  • Wang, Q., T. Stacy, J. D. Miller, A. F. Lewis, T. L. Gu, X. Huang, J. H. Bushweller, J. C. Bories, F. W. Alt, G. Ryan, P. P. Liu, A. Wynshaw-Boris, M. Binder, M. Marin-Padilla, A. H. Sharpe, and N. A. Speck 1996. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87: 697–708.
  • Wang, S., Q. Wang, B. E. Crute, I. N. Melnikova, S. R. Keller, and N. A. Speck 1993. Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol. Cell. Biol. 13: 3324–3339.
  • Wargnier, A., S. Legros-Maida, R. Bosselut, J. F. Bourge, C. Lafaurie, C. J. Ghysdael, M. Sasportes, and P. Paul 1995. Identification of human granzyme B promoter regulatory elements interacting with activated T-cell-specific proteins: implication of Ikaros and CBF binding sites in promoter activation. Proc. Natl. Acad. Sci. USA 92: 6930–6934.
  • Zhang, D. E., K. Fujioka, C. J. Hetherington, L. H. Shapiro, H. M. Chen, A. T. Look, and D. G. Tenen 1994. Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1). Mol. Cell. Biol. 14: 8085–8095.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.