7
Views
19
CrossRef citations to date
0
Altmetric
Gene Expression

Deadenylation-Dependent and -Independent Decay Pathways for α1-Tubulin mRNA in Chlamydomonas reinhardtii

&
Pages 1498-1505 | Received 20 Jun 1997, Accepted 15 Dec 1997, Published online: 28 Mar 2023

REFERENCES

  • Baker, E. J. 1997. mRNA polyadenylation: functional implications. Mod. Cell Biol. 17: 85–104.
  • Baker, E. J., J. A. Schloss, and J. L. Rosenbaum 1984. Rapid changes in tubulin RNA synthesis and stability induced by deflagellation in Chlamydomonas. J. Cell Biol. 99: 2074–2081.
  • Baker, E. J., L. R. Keller, J. A. Schloss, and J. L. Rosenbaum 1986. Protein synthesis is required for rapid degradation of tubulin mRNA and other deflagellation-induced RNAs in Chlamydomonas reinhardtii. Mol. Cell. Biol. 6: 54–61.
  • Baker, E. J., D. R. Diener, and J. L. Rosenbaum 1989. Accelerated poly(A) loss on α-tubulin mRNAs during protein synthesis inhibition in Chlamydomonas. J. Mol. Biol. 207: 771–781.
  • Baker, E. J., and P. Liggit 1993. Accelerated poly(A) loss and mRNA stabilization are independent effects of protein synthesis inhibition on α-tubulin mRNA in Chlamydomonas. Nucleic Acids Res. 21: 2237–2246.
  • Bashkirov, V. I., H. Scherthan, J. A. Solinger, J.-M. Buerstedde, and W.-D. Heyer 1997. A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J. Cell Biol. 136: 761–773.
  • Beelman, C. A., and R. Parker 1994. Differential effects of translational inhibition in cis and in trans on the decay of the unstable yeast MFA2 mRNA. J. Biol. Chem. 269: 9687–9692.
  • Beelman, C. A., A. Stevens, G. Caponigro, T. E. LaGrandeur, L. Hatfield, D. M. Fortner, and R. Parker 1996. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382: 642–646.
  • Binder, R. J., J. Horowitz, J. P. Basilion, D. M. Koeller, R. D. Klausner, and J. B. Harford 1994. Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage with the 3′ UTR and does not involve poly(A) tail shortening. EMBO J. 13: 1969–1980.
  • Brown, B., and R. Harland. Endonucleolytic cleavage of a maternal homeobox mRNA in Xenopus oocytes. Genes Dev. 4:1925–1935.
  • Caponigro, G., and R. Parker 1996. Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol. Rev. 60: 233–249.
  • Chen, C.-Y. A., and A-B Shyu 1995. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20: 465–469.
  • Couttet, P., M. Fromont-Racine, D. Steel, R. Pictet, and T. Grange 1997. Messenger RNA deadenylylation precedes decapping in mammalian cells. Proc. Natl. Acad. Sci. USA 94: 5628–5633.
  • Curry, A. M., B. D. Williams, and J. L. Rosenbaum 1992. Sequence analysis reveals homology between two proteins of the flagellar radial spoke. Mol. Cell. Biol. 12: 3967–3977.
  • Decker, C., and R. Parker 1993. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7: 1632–1643.
  • Harris, E. H. 1989. The Chlamydomonas sourcebook 593–594Academic Press, Inc., San Diego, Calif.
  • Higgs, D. C., and J. T. Colbert 1994. Oat phytochrome A mRNA degradation appears to occur via two distinct pathways. Plant Cell 6: 1007–1019.
  • Hsu, C. L., and A. Stevens 1993. Yeast cells lacking 5′→3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 13: 4826–4835.
  • Kindle, K. L. 1990. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 87: 1228–1232.
  • Kindle, K. L., R. A. Schnell, E. Fernandez, and P. A. Lefebvre 1989. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J. Cell Biol. 109: 2589–2601.
  • Kozminski, K., D. Diener, and J. Rosenbaum 1993. High level expression of nonacetylatable α-tubulin in Chlamydomonas reinhardtii. Cell Motil. Cytoskeleton 25: 158–170.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakour 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154: 367–382.
  • Lefebvre, P., and J. L. Rosenbaum 1986. Regulation of the synthesis and assembly of ciliary and flagellar proteins during regeneration. Annu. Rev. Cell Biol. 2: 517–546.
  • Liggit, P., S.-H. Cheng, and E. J. Baker 1994. Generating customized, long-lived 32P-labeled RNA size markers. BioTechniques 17: 465–466.
  • Muhlrad, D., and R. Parker 1994. Premature translation termination triggers mRNA decapping. Nature 370: 578–581.
  • Muhlrad, D., C. J. Decker, and R. Parker 1994. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′→3′ digestion of the transcript. Genes Dev. 8: 855–866.
  • Muhlrad, D., C. J. Decker, and R. Parker 1995. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell. Biol. 15: 2145–2156.
  • Nielsen, F. C., and J. Christiansen 1992. Endonucleolysis in the turnover of insulin-like growth factor II mRNA. J. Biol. Chem. 267: 19404–19411.
  • Rochaix, J.-D., S. Mayfield, M. Goldschmidt-Clermont, and J. Erickson 1988. Molecular biology of Chlamydomonas Plant molecular biology—a practical approach. In: Shaw, C. H.253–275IRL Press, Washington, D.C.
  • Sambrook, J. T., T. Maniatis, and E. F. Fritsch 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schloss, J. A., C. D. Silflow, and J. L. Rosenbaum 1984. mRNA abundance changes during flagellar regeneration in Chlamydomonas reinhardtii. Mol. Cell. Biol. 4: 424–434.
  • Stoeckle, M. Y., and H. Hanafusa 1989. Processing of 9E3 mRNA and regulation of its stability in normal and Rous sarcoma virus-transformed cells. Mol. Cell. Biol. 9: 4738–4745.
  • Tanzer, M. M., and R. B. Meagher 1995. Degradation of the soybean ribulose-1,5-bisphosphate carboxylase small-subunit mRNA, SRS4, initiates with endonucleolytic cleavage. Mol. Cell. Biol. 15: 6641–6652.
  • Tharun, S., and R. Parker 1997. mRNA turnover in eukaryotic cells. Mod. Cell Biol. 17: 181–198.
  • Tharun, S., and R. Sirdeshmukh 1995. Specific endonucleolytic cleavages of mouse albumin mRNA and their modulation during liver development. Nucleic Acids Res. 23: 641–646.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.