5
Views
9
CrossRef citations to date
0
Altmetric
Gene Expression

The Absence of Enhancer Competition betweenIgf2 and H19 following Transfer into Differentiated Cells

&
Pages 1903-1910 | Received 01 Oct 1997, Accepted 16 Jan 1998, Published online: 27 Mar 2023

REFERENCES

  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl 1988. Current protocols in molecular biology 1 John Wiley & Sons, New York, N.Y.
  • Bartolomei, M. S., and S. M. Tilghman 1992. Parental imprinting of mouse chromosome 7. Semin. Dev. Biol. 3: 107–117.
  • Bartolomei, M. S., A. L. Webber, M. E. Brunkow, and S. M. Tilghman 1993. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7: 1663–1673.
  • Bartolomei, M. S., S. Zemel, and S. M. Tilghman 1991. Parental imprinting of the mouse H19 gene. Nature 351: 153–155.
  • Behringer, R. R., T. M. Ryan, R. D. Palmiter, R. L. Brinster, and T. M. Townes 1990. Human γ- to β-globin gene switching in transgenic mice. Genes Dev. 4: 380–389.
  • Brandeis, M., T. Kafri, M. Ariel, J. R. Chaillet, J. McCarrey, A. Razin, and H. Cedar 1993. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J. 12: 3669–3677.
  • Brown, K. W., A. J. Villar, W. Bickmore, J. Clayton-Smith, D. Catchpole, E. R. Maher, and W. Reik 1996. Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway. Hum. Mol. Genet. 5: 2027–2032.
  • Brunkow, M. E., and S. M. Tilghman 1991. Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev. 5: 1092–1101.
  • Carle, G. F., and M. V. Olson 1985. An electrophoretic karyotype for yeast. Proc. Natl. Acad. Sci. USA 82: 3756–3760.
  • Chu, G., D. Vollrath, and R. W. Davis 1986. Separation of large DNA molecules by contour-clamped homogenous electric fields. Science 234: 1582–1585.
  • Cleary, M. A., and S. M. Tilghman. Unpublished results.
  • DeChiara, T. M., E. J. Robertson, and A. Efstratiadis 1991. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64: 849–859.
  • Dillon, N., and F. Grosveld 1993. Transcriptional regulation of multigene loci: multilevel control. Trends Genet. 9: 134–137.
  • Elson, D. A., and M. S. Bartolomei 1997. A 5′ differentially methylated sequence and the 3′ flanking region are necessary for H19 transgene imprinting. Mol. Cell. Biol. 17: 309–317.
  • Enver, T., N. Raich, A. J. Ebens, T. Papayannopoulou, F. Costantini, and G. Stamatoyannopoulos 1990. Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. Nature 344: 309–313.
  • Feil, R., J. Walter, N. D. Allen, and W. Reik 1994. Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development 120: 2933–2943.
  • Ferguson-Smith, A. C., H. Sasaki, B. M. Cattanach, and M. A. Surani 1993. Parental-origin-specific epigenetic modifications of the mouse H19 gene. Nature 362: 751–755.
  • Giddings, S. J., C. D. King, K. W. Harman, J. F. Flood, and L. R. Carnaghi 1994. Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nat. Genet. 6: 310–313.
  • Godbout, R., R. Ingram, and S. M. Tilghman 1986. Multiple regulatory elements in the intergenic region between the α-fetoprotein and albumin genes. Mol. Cell. Biol. 6: 477–487.
  • Green, E. D., and M. V. Olson 1990. Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87: 1213–1217.
  • Grosveld, F., G. Blom van Assendelft, D. R. Greaves, and G. Kollias 1987. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51: 975–985.
  • Guillemot, F., T. Caspary, S. M. Tilghman, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, D. J. Anderson, A. L. Joyner, J. Rossant, and A. Nagy 1995. Genomic imprinting of Mash-2, a mouse gene required for trophoblast development. Nat. Genet. 9: 235–241.
  • Hall, J. G. 1997. Genomic imprinting: nature and clinical relevance. Annu. Rev. Med. 48: 35–44.
  • Hanscombe, O., D. Whyatt, P. Fraser, N. Yannoutsos, D. Greaves, N. Dillon, and F. Grosveld 1991. Importance of globin gene order for correct developmental expression. Genes Dev. 5: 1387–1394.
  • Hatada, I., and T. Mukai 1995. Genomic imprinting of p57/KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nat. Genet. 11: 204–206.
  • Hirt, B. 1967. Selective extraction of polyoma DNA from infected mouse cultures. J. Mol. Biol. 26: 365–369.
  • Huxley, C., Y. Hagino, D. Schlessinger, and M. V. Olson 1991. The human HPRT gene on a yeast artificial chromosome is functional when transferred to mouse cells by cell fusion. Genomics 9: 742–750.
  • Jakobovits, A., A. L. Moore, L. L. Green, G. J. Vergara, C. E. Maynard-Currie, H. A. Austin, and S. Klapholz 1993. Germ-line transmission and expression of a human-derived yeast artificial chromosome. Nature 362: 255–258.
  • Jinno, Y., K. Sengoku, M. Nakao, K. Tamate, T. Mitamoto, T. Matsuzaka, J. S. Sutcliffe, T. Anan, N. Takuma, K. Nishiwaki, Y. Ikeda, T. Ishimaru, M. Ishikawa, and N. Niikawa 1996. Mouse/human sequence divergence in a region with a paternal-specific methylation imprint at the human H19 locus. Hum. Mol. Genet. 5: 1155–1161.
  • Koide, T., J. Ainscough, M. Wugerde, and M. A. Surani 1994. Comparative analysis of Igf-2/H19 imprinted domain: identification of a highly conserved intergenic DNase I hypersensitive region. Genomics 24: 1–8.
  • Kusumi, K., J. S. Smith, J. A. Segre, D. S. Koos, and E. S. Lander 1993. Construction of a large insert yeast artificial chromosome library of the mouse genome. Mamm. Genome 4: 391–392.
  • Lee, J. T., and R. Jaenisch 1996. A method for high efficiency YAC lipofection into murine embryonic stem cells. Nucleic Acids Res. 24: 5054–5055.
  • Leighton, P. A., R. S. Ingram, J. Eggenschwiler, A. Efstratiadis, and S. M. Tilghman 1995. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375: 34–39.
  • Leighton, P. A., J. R. Saam, R. S. Ingram, C. L. Stewart, and S. M. Tilghman 1995. An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 9: 2079–2089.
  • Li, E., C. Beard, and R. Jaenisch 1993. The role of DNA methylation in genomic imprinting. Nature 366: 362–365.
  • Moulton, T., T. Crenshaw, Y. Hao, J. Moosikasuwan, N. Lin, F. Dembitzer, T. Hensle, L. Weiss, L. McMorrow, T. Loew, W. Kraus, W. Gerald, and B. Tycko 1994. Epigenetic lesions at the H19 locus in Wilms’ tumour patients. Nat. Genet. 7: 440–447.
  • Ogawa, O., M. R. Eccles, J. Szeto, L. A. McNoe, K. Yun, M. A. Maw, P. J. Smith, and A. E. Reeve 1993. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature 362: 749–751.
  • Peterson, K. R., G. Zitnik, C. Huxley, C. H. Lowrey, A. Gnirke, K. A. Leppig, T. Papayannopoulou, and G. Stamatoyannopoulous 1993. Use of yeast artificial chromosomes (YACs) for studying control of gene expression: correct regulation of the genes of a human β-globin locus YAC following transfer to mouse erythroleukemia cell lines. Proc. Natl. Acad. Sci. USA 90: 11207–11211.
  • Pfeifer, K., P. A. Leighton, and S. M. Tilghman 1996. The structural H19 gene is required for its own imprinting. Proc. Natl. Acad. Sci. USA 93: 13876–13883.
  • Rainier, S., L. A. Johnson, C. J. Dobry, A. J. Ping, P. E. Grundy, and A. P. Feinberg 1993. Relaxation of imprinted genes in human cancer. Nature 362: 747–750.
  • Reik, W., K. W. Brown, H. Schneid, Y. LeBouc, W. Bickmore, and E. R. Maher 1995. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by an altered imprinting pattern in the IGF2-H19 domain. Hum. Mol. Genet. 4: 2379–2385.
  • Reik, W., and E. R. Maher 1997. Imprinting in clusters: lessons from Beckwith-Wiedemann syndrome. Trends Genet. 13: 330–334.
  • Rigby, P. W. J., M. Dieckmann, D. Rhodes, and P. Berg 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113: 237–251.
  • Ripoche, M.-A., C. Kress, F. Poirier, and L. Dandolo 1997. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev. 11: 1596–1604.
  • Rose, M. D., F. Winston, and P. Hieter 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sasaki, H., P. A. Jones, J. R. Chaillet, A. C. Ferguson-Smith, S. Barton, W. Reik, and M. A. Surani 1992. Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor (Igf2) gene. Genes Dev. 6: 1843–1856.
  • Schedl, A., L. Montoliu, G. Kelsey, and G. Schutz 1993. A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice. Nature 362: 258–261.
  • Sikorski, R. S., and P. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 9–27.
  • Smrzka, O. W., I. Fae, R. Stoger, R. Kurzbauer, G. F. Fischer, T. Henn, A. Weith, and D. P. Barlow 1995. Conservation of a maternal-specific methylation signal at the human IGF2R locus. Hum. Mol. Genet. 4: 1945–1952.
  • Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.
  • Spencer, F., Y. Hugerat, G. Simchen, O. Hurko, C. Connelly, and P. Hieter 1994. Yeast kar1 mutants provide an effective method for YAC transfer to new hosts. Genomics 22: 118–126.
  • Steenman, M. J. C., S. Rainier, C. J. Dobry, P. Grundy, I. L. Horon, and A. P. Feinberg 1994. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nat. Genet. 7: 433–439.
  • Strauss, W. M., J. Dausman, C. Beard, C. Johnson, J. B. Lawrence, and R. Jaenisch 1993. Germline transmission of a yeast artificial chromosome spanning the murine α1 (I) collagen locus. Science 259: 1904–1907.
  • Svensson, K., C. Walsh, R. Fundele, and R. Ohlsson 1995. H19 is imprinted in the choroid plexus and leptomeninges of the mouse foetus. Mech. Dev. 51: 31–37.
  • Thomas, P. S. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77: 5201–5205.
  • Tremblay, K. D., K. L. Duran, and M. S. Bartolomei 1997. A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol. Cell. Biol. 17: 4322–4329.
  • Tremblay, K. D., J. R. Saam, R. S. Ingram, S. M. Tilghman, and M. S. Bartolomei 1995. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat. Genet. 9: 407–413.
  • Tucker, K. L., C. Beard, J. Dausman, J. Jackson-Grusby, P. W. Laird, H. Lei, E. Li, and R. Jaenisch 1996. Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev. 10: 1008–1020.
  • Walter, J., N. Allen, T. Kruger, S. Engemann, G. Kelsey, R. Feil, T. Forne, and W. Reik 1996. Genomic imprinting and modifier genes in the mouse Epigenetic mechanisms of gene regulation. In: Russo, V. E. A., R. A. Martienssen, and A. D. Riggs195–213Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Webber, A. L., R. S. Ingram, J. M. Levorse, and S. M. Tilghman 1998. Location of enhancers is essential for imprinting of H19 and Igf2. Nature, in press.
  • Yoo-Warren, H., V. Pachnis, R. S. Ingram, and S. M. Tilghman 1988. Two regulatory domains flank the mouse H19 gene. Mol. Cell. Biol. 8: 4707–4715.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.