47
Views
158
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Expansions and Contractions in a Tandem Repeat Induced by Double-Strand Break Repair

, &
Pages 2045-2054 | Received 25 Nov 1997, Accepted 16 Jan 1998, Published online: 27 Mar 2023

REFERENCES

  • Alani, E., L. Cao, and N. Kleckner 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116: 541–545.
  • Armour, J. A., and A. J. Jeffreys 1992. Biology and applications of human minisatellite loci. Curr. Opin. Genet. Dev. 2: 850–856.
  • Bremer, M. C., F. S. Gimble, J. Thorner, and C. L. Smith 1992. VDE endonuclease cleaves Saccharomyces cerevisiae genomic DNA at a single site: physical mapping of the VMA1 gene. Nucleic Acids Res. 20: 5484–5490.
  • Buard, J., and A. J. Jeffreys 1997. Big, bad minisatellites. Nat. Genet. 15: 327–328.
  • Canceill, D., and S. D. Ehrlich 1996. Copy-choice recombination mediated by DNA polymerase III holoenzyme from Escherichia coli. Proc. Natl. Acad. Sci. USA 93: 6647–6652.
  • Carroll, D., S. H. Wright, R. K. Wolff, E. Grzesiuk, and E. B. Maryon 1986. Efficient homologous recombination of linear DNA substrates after injection into Xenopus laevis oocytes. Mol. Cell. Biol. 6: 2053–2061.
  • Chen, D. C., B. C. Yang, and T. T. Kuo 1992. One-step transformation of yeast in stationary phase. Curr. Genet. 21: 83–84.
  • Chen, X., S. V. S. Mariappan, P. Catasti, R. Ratliff, R. K. Moyzis, A. Laayoun, S. S. Smith, E. M. Bradbury, and G. Gupta 1995. Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. Proc. Natl. Acad. Sci. USA 92: 5199–5203.
  • Delattre, M., D. Anxolabéhère, and D. Coen 1996. Prevalence of localized rearrangements vs. transposition among events induced by Drosophila transposase on a P transgene. Genetics 141: 1407–1424.
  • Engels, W. R., D. M. Johnson-Schlitz, W. B. Eggleston, and J. Sved 1990. High-frequency P element loss in Drosophila is homolog dependent. Cell 62: 515–525.
  • Ferguson, D. O., and W. K. Holloman 1996. Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc. Natl. Acad. Sci. USA 93: 5419–5424.
  • Fishman-Lobell, J., and J. E. Haber 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258: 480–484.
  • Fogel, S., R. K. Mortimer, and K. Lusnack 1981. Mechanisms of meiotic gene conversion, or “wanderings on a foreign standard,” The molecular analysis of the yeast Saccharomyces cerevisiae: life cycle and inheritance. In: Strathern, J. N., E. W. Jones, and J. R. Broach289–339Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Formosa, T., and B. M. Alberts 1986. DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell 47: 793–806.
  • Fu, Y.-H., D. P. A. Kuhl, A. Pizzuti, M. Pieretti, J. S. Sutcliffe, S. Richards, A. J. M. H. Verkerk, J. J. A. Holden, R. G. Fenwick, S. T. Warren, et al. 1991. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67: 1047–1058.
  • Gacy, A. M., G. Goellner, N. Juranic, S. Macura, and C. T. McMurray 1995. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81: 533–540.
  • Gilbertson, L. A., and F. W. Stahl 1996. A test of the double-strand break repair model for meiotic recombination in Saccharomyces cerevisiae. Genetics 144: 27–41.
  • Gloor, G. B., N. A. Nassif, D. M. Johnson-Schlitz, C. R. Preston, and W. R. Engels 1991. Targeted gene replacement in Drosophila via P element-induced gap-repair. Science 253: 1110–1117.
  • Gonzy-Treboul, G., J. A. Lepesant, and J. Deutsch 1995. Enhancer-trap targeting at the Broad-Complex locus of Drosophila melanogaster. Genes Dev. 9: 1137–1148.
  • Haber, J. E., and W.-Y. Leung 1996. Lack of chromosome territoriality: promiscuous rejoining of broken chromosome ends. Proc. Natl. Acad. Sci. USA 93: 13949–13954.
  • Harris, S., K. S. Rudnicki, and J. E. Haber 1993. Gene conversion and crossing-over during homologous and homeologous ectopic recombination in Saccharomyces cerevisiae. Genetics 135: 5–16.
  • Hastings, P. J. 1988. Recombination in the eukaryotic nucleus. Bioessays 9: 61–64.
  • Holliday, R. 1964. A mechanism for gene conversion in fungi. Genet. Res. 5: 282–304.
  • Jeffreys, A. J., K. Tamaki, A. MacLeod, D. G. Monckton, D. L. Neil, and J. A. L. Armour 1994. Complex gene conversion events in germline mutation at human minisatellites. Nat. Genet. 6: 136–145.
  • Kang, S., K. Ohshima, M. Shimizu, S. Amirhaeri, and R. D. Wells 1995. Pausing of DNA synthesis in vitro at specific loci in CTG and CGG triplet repeats from human hereditary disease gene. J. Biol. Chem. 270: 27014–27021.
  • Klar, A. J., and J. N. Strathern 1984. Resolution of recombination intermediates generated during yeast mating type switching. Nature 310: 744–748.
  • Klein, H. L. 1984. Lack of association between intrachromosomal gene conversion and reciprocal exchange. Nature 310: 748–753.
  • Kornberg, A., and T. Baker 1992. DNA replication. W. H. Freeman and Company, New York, N.Y.
  • Kurkulos, M., J. M. Weinberg, D. Roy, and S. M. Mount 1994. P element-mediated in vivo deletion analysis of white-apricot: deletions between direct repeats are strongly favored. Genetics 136: 1001–1011.
  • Lafrenière, R. G., D. L. Rochefort, N. Chrétien, J. M. Rommens, J. I. Cochius, R. Kälviäinen, U. Nousiainen, G. Patry, K. Farrell, K. Söderfeldt, et al. 1997. Unstable insertion of the 5′ flanking region of the cystatin B gene is the most common mutation in progressive myoclonus epilepsy type 1, EPM1. Nat. Genet. 15: 298–302.
  • Laliotti, M. D., H. S. Scott, C. Buresi, C. Rossier, A. Bottani, M. A. Morris, A. Malafosse, and S. E. Antonorakis 1997. Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature 386: 847–851.
  • Lederberg, J. 1955. Recombination mechanisms in bacteria. J. Cell. Comp. Physiol. 45: 75–107.
  • Lichten, M., and A. S. H. Goldman 1995. Meiotic recombination hotspots. Annu. Rev. Genet. 29: 423–444.
  • Lin, F.-L., K. Sperle, and N. Sternberg 1984. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol. Cell. Biol. 4: 1020–1034.
  • Lin, F.-L., K. Sperle, and N. Sternberg 1990. Repair of double-stranded DNA breaks by homologous DNA fragments during transfer of DNA into mouse L cells. Mol. Cell. Biol. 10: 113–119.
  • Lovett, S. T., and V. V. Feschenko 1996. Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate. Proc. Natl. Acad. Sci. USA 93: 7120–7124.
  • Malter, H. E., J. C. Iber, R. Willemsen, E. de Graaff, J. C. Tarleton, J. Leisti, S. T. Warren, and B. A. Oostra 1997. Characterization of the full fragile X syndrome mutation in fetal gametes. Nat. Genet. 15: 165–169.
  • McGill, C., B. Shafer, and J. N. Strathern 1989. Coconversion of flanking sequences with homothallic switching. Cell 57: 459–467.
  • Miltas, M., A. Yu, J. Dill, T. J. Kamp, E. J. Chambers, and I. S. Haworth 1995. Hairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)15. Nucleic Acids Res. 23: 1050–1059.
  • Moore, J. K., and J. E. Haber 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 2164–2173.
  • Mueller, J. E., J. Clyman, Y.-J. Huang, M. M. Parker, and M. Belfort 1996. Intron mobility in phage T4 occurs in the context of recombination-dependent DNA replication by way of multiple pathways. Genes Dev. 10: 351–364.
  • Nasmyth, K. A. 1982. Molecular genetics of yeast mating type. Annu. Rev. Genet. 16: 439–500.
  • Nassif, N., J. Penney, S. Pal, W. R. Engels, and G. B. Gloor 1994. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14: 1613–1625.
  • Nelson, H. H., D. B. Sweetser, and J. A. Nickoloff 1996. Effect of terminal nonhomology and homeology on double-strand-break-induced gene conversion tract directionality. Mol. Cell. Biol. 16: 2951–2957.
  • Orr-Weaver, T. L., J. W. Szostack, and R. Rothstein 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78: 6354–6358.
  • Orr-Weaver, T. L., and J. W. Szostack 1983. Yeast recombination: the association between double-strand gap repair and crossing-over. Proc. Natl. Acad. Sci. USA 80: 4417–4421.
  • Ozenberger, B. A., and G. S. Roeder 1991. A unique pathway of double-strand break repair operates in tandemly repeated genes. Mol. Cell. Biol. 11: 1222–1231.
  • Pâques, F., and M. Wegnez 1993. Deletions and amplifications of tandemly arranged ribosomal 5S genes internal to a P element occur at a high rate in a dysgenic context. Genetics 135: 469–476.
  • Pâques, F., B. Bucheton, and M. Wegnez 1996. Rearrangements involving repeated sequences within a P element preferentially occur between units close to the transposon extremities. Genetics 142: 459–470.
  • Pâques, F., and J. E. Haber. Unpublished data.
  • Plessis, A., and B. Dujon 1993. Multiple tandem integrations of transforming DNA sequences in yeast chromosomes suggest a mechanism for integrative transformation by homologous recombination. Gene 134: 41–50.
  • Plessis, A., A. Perrin, J. E. Haber, and B. Dujon 1992. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130: 451–460.
  • Porter, S. E., M. A. White, and T. D. Petes 1993. Genetic evidence that the meiotic recombination hotspot at the HIS4 locus of Saccharomyces cerevisiae does not represent a site for a symmetrically processed double-strand break. Genetics 134: 5–19.
  • Resnick, M. A., and P. Martin 1976. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol. Gen. Genet. 143: 119–129.
  • Rothstein, R. 1983. One-step gene disruption in yeast. Methods Enzymol. 101: 202–211.
  • Rudin, N., and J. E. Haber 1988. Efficient gap repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol. Cell. Biol. 8: 3918–3928.
  • Sandell, L. L., and V. A. Zakian 1991. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75: 729–739.
  • Schwacha, A., and N. Kleckner 1995. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83: 783–791.
  • Sherer, S., and R. W. Davis 1979. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc. Natl. Acad. Sci. USA 76: 4951–4955.
  • Sherman, F., G. R. Fink, and J. B. Hicks 1986. Methods in yeast genetics: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Silberman, R., and M. Kupiec 1994. Plasmid-mediated induction of recombination in yeast. Genetics 137: 41–48.
  • Sinden, R. R., and R. D. Wells 1992. DNA structure, mutation, and human genetic disease. Curr. Opin. Biotechnol. 3: 612–622.
  • Strand, M., T. A. Prolla, R. M. Liskay, and T. D. Petes 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365: 274–276.
  • Strathern, J. N., A. J. Klar, J. B. Hicks, J. A. Abraham, J. M. Ivy, K. A. Nasmyth, and C. McGill 1982. Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31: 183–192.
  • Sugawara, N., and J. E. Haber 1992. Characterization of double-strand break-induced recombination: homology requirements and single-strand DNA formation. Mol. Cell. Biol. 12: 563–575.
  • Sun, H., D. Treco, N. P. Schultes, and J. W. Szostak 1989. Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338: 87–90.
  • Sun, H., D. Treco, and J. W. Szostak 1991. Extensive 3′-overhanging, single-stranded DNA associated with meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64: 1155–1161.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl 1983. The double-strand-break repair model for recombination. Cell 33: 25–35.
  • Thompson-Stewart, D., G. H. Karpen, and A. C. Spradling 1994. A transposable element can drive the concerted evolution of tandemly repetitious DNA. Proc. Natl. Acad. Sci. USA 91: 9042–9046.
  • Tishkoff, D. X., N. Filosi, G. M. Gaida, and R. D. Kolodner 1997. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88: 253–263.
  • Tran, H. T., N. P. Degtyareva, N. N. Koloteva, A. Sugino, H. Masumoto, D. A. Gordenin, and M. A. Resnick 1995. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol. Cell. Biol. 15: 5607–5617.
  • Trinh, T. Q., and R. R. Sinden 1991. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature 352: 544–547.
  • Virtaneva, K., E. D’Amato, J. Miao, M. Koskiniemi, R. Norio, G. Avanzini, S. Franceschetti, R. Michelucci, C. A. Tassinari, S. Omer, et al. 1997. Unstable minisatellite expansion causing recessively inherited myoclonus epilepsy, EPM1. Nat. Genet. 15: 393–396.
  • Warren, S. T. 1996. The expanding world of trinucleotide repeats. Science 271: 1374–1375.
  • Welch, J. W., D. H. Maloney, and S. Fogel 1990. Unequal crossing-over and gene conversion at the amplified CUP1 locus of yeast. Mol. Gen. Genet. 222: 304–310.
  • Welch, J. W., D. H. Maloney, and S. Fogel 1990. Gene conversions within the Cup1r region from heterologous crosses in Saccharomyces cerevisiae. Mol. Gen. Genet. 229: 261–266.
  • White, C. I., and J. E. Haber 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9: 663–674.
  • Yu, S., M. Mangelsdorf, D. Hewett, L. Hobson, E. Baker, H. J. Eyre, N. Lapsys, D. Le Paslier, N. A. Doggett, G. R. Sutherland, and R. I. Richards 1997. Human chromosomal fragile site FRA16B is an amplified AT-rich minisatellite repeat. Cell 88: 367–374.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.