24
Views
156
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A Role for CREB Binding Protein and p300 Transcriptional Coactivators in Ets-1 Transactivation Functions

, , , &
Pages 2218-2229 | Received 21 Nov 1997, Accepted 19 Jan 1998, Published online: 27 Mar 2023

REFERENCES

  • Abraham, S. E., S. Lobo, P. Yaciuk, H. G. Wang, and E. Moran 1993. p300, and p300-associated proteins, are components of TATA-binding protein (TBP) complexes. Oncogene 8: 1639–1647.
  • Albagli, O., A. Flourens, P. Crepieux, A. Begue, D. Stehelin, and D. Leprince 1992. Phylogeny of the p68c-ets-1 amino-terminal transactivating domain reveals some highly conserved structural features. Oncogene 7: 1435–1439.
  • Albagli, O., N. Soudant, E. Ferreira, P. Dhordain, F. Dewitte, A. Begue, A. Flourens, D. Stehelin, and D. Leprince 1994. A model for gene evolution of the ets-1/ets-2 transcription factors based on structural and functional homologies. Oncogene 9: 3259–3271.
  • Allen, J. B., M. W. Walberg, M. C. Edwards, and S. J. Elledge 1995. Finding prospective partners in the library: the two-hybrid system and phage display find a match. Trends Biochem. Sci. 20: 511–516.
  • Arany, Z., D. Newsome, E. Oldread, D. M. Livingston, and R. Eckner 1995. A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374: 81–84.
  • Arany, Z., W. R. Sellers, D. M. Livingston, and R. Eckner 1994. E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 77: 799–800.
  • Arias, J., A. S. Alberts, P. Brindle, F. X. Claret, T. Smeal, M. Karin, J. Feramisco, and M. Montminy 1994. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370: 226–229.
  • Avantaggiati, M. L., M. Carbone, A. Graessmann, Y. Nakatani, B. Howard, and A. S. Levine 1996. The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct isoforms of the transcriptional coactivator, p300. EMBO J. 15: 2236–2248.
  • Avantaggiati, M. L., V. Ogryzko, K. Gardner, A. Giordano, A. S. Levine, and K. Kelly 1997. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89: 1175–1184.
  • Bannister, A. J., and T. Kouzarides 1995. CBP-induced stimulation of c-Fos activity is abrogated by E1A. EMBO J. 14: 4758–4762.
  • Bannister, A. J., and T. Kouzarides 1996. The CBP co-activator is a histone acetyltransferase. Nature 384: 641–643.
  • Bories, J. C., D. M. Willerford, D. Grevin, L. Davidson, A. Camus, P. Martin, D. Stehelin, F. W. Alt, and J. C. Borles 1995. Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 proto-oncogene. Nature 377: 635–638.
  • Borrow, J., Stanton, V. P.Jr., J. M. Andresen, R. Becher, F. G. Behm, R. S. Chaganti, C. I. Civin, C. Disteche, I. Dube, A. M. Frischauf, D. Horsman, F. Mitelman, S. Volinia, A. E. Watmore, and D. E. Housman 1996. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat. Genet. 14: 33–41.
  • Bradford, A. P., K. E. Conrad, P. H. Tran, M. C. Ostrowski, and A. Gutierrez-Hartmann 1996. GHF-1/Pit-1 functions as a cell-specific integrator of Ras signaling by targeting the Ras pathway to a composite Ets-1/GHF-1 response element. J. Biol. Chem. 271: 24639–24648.
  • Bradford, A. P., K. E. Conrad, C. Wasylyk, B. Wasylyk, and A. Gutierrez-Hartmann 1995. Functional interaction of c-Ets-1 and GHF-1/Pit-1 mediates Ras activation of pituitary-specific gene expression: mapping of the essential c-Ets-1 domain. Mol. Cell. Biol. 15: 2849–2857.
  • Brindle, P. Unpublished data.
  • Brindle, P., S. Linke, and M. Montminy 1993. Protein-kinase-A-dependent activator in transcription factor CREB reveals new role for CREM repressors. Nature 364: 821–824.
  • Brindle, P., T. Nakajima, and M. Montminy 1995. Multiple PK-A regulated events are required for transcriptional induction by cAMP. Proc. Natl. Acad. Sci. USA 92: 10521–10525.
  • Brunner, D., K. Ducker, N. Oellers, E. Hafen, H. Scholz, and C. Klambt 1994. The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature 370: 386–389.
  • Chakravarti, D., V. J. LaMorte, M. C. Nelson, T. Nakajima, I. G. Schulman, H. Juguilon, M. Montminy, and R. M. Evans 1996. Role of CBP/P300 in nuclear receptor signalling. Nature 383: 99–103.
  • Dai, P., H. Akimaru, Y. Tanaka, D. X. Hou, T. Yasukawa, C. Kanei-Ishii, T. Takahashi, and S. Ishii 1996. CBP as a transcriptional coactivator of c-Myb. Genes Dev. 10: 528–540.
  • Dudek, H., R. V. Tantravahi, V. N. Rao, E. S. Reddy, and E. P. Reddy 1992. Myb and Ets proteins cooperate in transcriptional activation of the mim-1 promoter. Proc. Natl. Acad. Sci. USA 89: 1291–1295.
  • Eckner, R., M. E. Ewen, D. Newsome, M. Gerdes, J. A. DeCaprio, J. B. Lawrence, and D. M. Livingston 1994. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8: 869–884.
  • Eckner, R., T. P. Yao, E. Oldread, and D. M. Livingston 1996. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10: 2478–2490.
  • Espinas, M. L., J. Roux, J. Ghysdael, R. Pictet, and T. Grange 1994. Participation of Ets transcription factors in the glucocorticoid response of the rat tyrosine aminotransferase gene. Mol. Cell Biol. 14: 4116–4125.
  • Ferreri, K., G. Gill, and M. Montminy 1994. The cAMP-regulated transcription factor CREB interacts with a component of the TFIID complex. Proc. Natl. Acad. Sci. USA 91: 1210–1213.
  • Frampton, J., T. Kouzarides, G. Doderlein, T. Graf, and K. Weston 1993. Influence of the v-Myb transactivation domain on the oncoprotein’s transformation specificity. EMBO J. 12: 1333–1341.
  • Gerritsen, M. E., A. J. Williams, A. S. Neish, S. Moore, Y. Shi, and T. Collins 1997. CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. USA 94: 2927–2932.
  • Graf, T. 1992. Myb: a transcriptional activator linking proliferation and differentiation in hematopoietic cells. Curr. Opin. Genet. Dev. 2: 249–255.
  • Gu, W., X. L. Shi, and R. G. Roeder 1997. Synergistic activation of transcription by CBP and p53. Nature 387: 819–823.
  • Hecht, A., T. Laroche, S. Strahl-Bolsinger, S. M. Gasser, and M. Grunstein 1995. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80: 583–592.
  • Herschlag, D., and F. B. Johnson 1993. Synergism in transcriptional activation: a kinetic view. Genes Dev. 7: 173–179.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51–59.
  • Horvai, A. E., L. Xu, E. Korzus, G. Brard, D. Kalafus, T. M. Mullen, D. W. Rose, M. G. Rosenfeld, and C. K. Glass 1997. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc. Natl. Acad. Sci. USA 94: 1074–1079.
  • Janknecht, R., and T. Hunter 1996. Transcription. A growing coactivator network. Nature 383: 22–23.
  • Janknecht, R., and A. Nordheim 1996. Regulation of the c-fos promoter by the ternary complex factor Sap-1a and its coactivator CBP. Oncogene 12: 1961–1969.
  • Kamei, Y., L. Xu, T. Heinzel, J. Torchia, R. Kurokawa, B. Gloss, S. C. Lin, R. A. Heyman, D. W. Rose, C. K. Glass, and M. G. Rosenfeld 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85: 403–414.
  • Kee, B. L., J. Arias, and M. R. Montminy 1996. Adaptor-mediated recruitment of RNA polymerase II to a signal-dependent activator. J. Biol. Chem. 271: 2373–2375.
  • Klambt, C. 1993. The Drosophila gene pointed encodes two ETS-like proteins which are involved in the development of the midline glial cells. Development 117: 163–176.
  • Kwok, R. P., J. R. Lundblad, J. C. Chrivia, J. P. Richards, H. P. Bachinger, R. G. Brennan, S. G. Roberts, M. R. Green, and R. H. Goodman 1994. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370: 223–226.
  • Lai, J. S., and W. Herr 1992. Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proc. Natl. Acad. Sci. USA 89: 6958–6962.
  • Lee, J. S., R. H. See, T. Deng, and Y. Shi 1996. Adenovirus E1A downregulates c-Jun- and JunB-mediated transcription by targeting their coactivator p300. Mol. Cell. Biol. 16: 4312–4326.
  • Leprince, D., A. Gegonne, J. Coll, C. de Taisne, A. Schneeberger, C. Lagrou, and D. Stehelin 1983. A putative second cell-derived oncogene of the avian leukaemia retrovirus E26. Nature 306: 395–397.
  • Logan, S. K., M. J. Garabedian, C. E. Campbell, and Z. Werb 1996. Synergistic transcriptional activation of the tissue inhibitor of metalloproteinase-1 promoter via functional interaction of AP-1 and Ets-1 transcription factors. J. Biol. Chem. 271: 774–782.
  • Lundblad, J. R., R. P. S. Kwok, M. E. Laurance, M. L. Harter, and R. H. Goodman 1995. Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374: 85–88.
  • Macleod, K., D. Leprince, and D. Stehelin 1992. The ets gene family. Trends Biochem. Sci. 17: 251–256.
  • Martin, K. J., J. W. Lillie, and M. R. Green 1990. Evidence for interaction of different eukaryotic transcriptional activators with distinct cellular targets. Nature 346: 147–152.
  • Melotti, P., and B. Calabretta 1994. Ets-2 and c-Myb act independently in regulating expression of the hematopoietic stem cell antigen CD34. J. Biol. Chem. 269: 25303–25309.
  • Metz, T., and T. Graf 1991. v-myb and v-ets transform chicken erythroid cells and cooperate both in trans and in cis to induce distinct differentiation phenotypes. Genes Dev. 5: 369–380.
  • Metz, T., and T. Graf 1991. Fusion of the nuclear oncoproteins v-Myb and v-Ets is required for the leukemogenicity of E26 virus. Cell 66: 95–105.
  • Muthusamy, N., K. Barton, and J. M. Leiden 1995. Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature 377: 639–642.
  • Nakajima, T., A. Fukamizu, J. Takahashi, F. H. Gage, T. Fisher, J. Blenis, and M. R. Montminy 1996. The signal-dependent coactivator CBP is a nuclear target for pp90RSK. Cell 86: 465–474.
  • Nakajima, T., C. Uchida, S. F. Anderson, C. G. Lee, J. Hurwitz, J. D. Parvin, and M. Montminy 1997. RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90: 1107–1112.
  • Nelsen, B., G. Tian, B. Erman, J. Gregoire, R. Maki, B. Graves, and R. Sen 1993. Regulation of lymphoid-specific immunoglobulin mu heavy chain gene enhancer by ETS-domain proteins. Science 261: 82–86.
  • Nunn, M. F., P. H. Seeburg, C. Moscovici, and P. H. Duesberg 1983. Tripartite structure of the avian erythroblastosis virus E26 transforming gene. Nature 306: 391–395.
  • Oelgeschlager, M., R. Janknecht, J. Krieg, S. Schreek, and B. Luscher 1996. Interaction of the co-activator CBP with Myb proteins: effects on Myb-specific transactivation and on the cooperativity with NF-M. EMBO J. 15: 2771–2780.
  • Ogryzko, V. V., R. L. Schlitz, V. Russanova, B. H. Howard, and Y. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959.
  • O’Neill, E. M., I. Rebay, R. Tjian, and G. M. Rubin 1994. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78: 137–147.
  • Parker, D., K. Ferreri, T. Nakajima, V. J. LaMorte, R. Evans, S. C. Koerber, C. Hoeger, and M. R. Montminy 1996. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol. Cell. Biol. 16: 694–703.
  • Petrij, F., R. H. Giles, H. G. Dauwerse, J. J. Saris, R. C. M. Hennekam, M. Masuno, N. Tommerup, G.-J. B. van Ommen, R. H. Goodman, D. J. M. Peters, and M. H. Breuning 1995. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376: 348–351.
  • Ponting, C. P., D. J. Blake, K. E. Davies, J. Kendrick-Jones, and S. J. Winder 1996. ZZ and TAZ: new putative zinc fingers in dystrophin and other proteins. Trends Biochem. Sci. 21: 11–13.
  • Quinn, P. G. 1993. Distinct activation domains within cAMP response element-binding protein (CREB) mediate basal and cAMP-stimulated transcription. J. Biol. Chem. 268: 16999–17009.
  • Rascle, A., N. Ferrand, O. Gandrillon, and J. Samarut 1996. Myb-Ets fusion oncoprotein inhibits thyroid hormone receptor/c-ErbA and retinoic acid receptor functions: a novel mechanism of action for leukemogenic transformation by E26 avian retrovirus. Mol. Cell. Biol. 16: 6338–6351.
  • Reddy, M. A., B. S. Yang, X. Yue, C. J. Barnett, I. L. Ross, M. J. Sweet, D. A. Hume, and M. C. Ostrowski 1994. Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes. J. Exp. Med. 180: 2309–2319.
  • Sadowski, I., B. Bell, P. Broad, and M. Hollis 1992. GAL4 fusion vectors for expression in yeast or mammalian cells. Gene 118: 137–141.
  • Schreiber, E., P. Matthias, M. M. Muller, and W. Schaffner 1989. Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res. 17: 6419.
  • Shapiro, L. H. 1995. Myb and Ets proteins cooperate to transactivate an early myeloid gene. J. Biol. Chem. 270: 8763–8771.
  • Sieweke, M. H., H. Tekotte, J. Frampton, and T. Graf 1996. MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation. Cell 85: 49–60.
  • Smits, P. H., L. de Wit, A. J. van der Eb, and A. Zantema 1996. The adenovirus E1A-associated 300 kDa adaptor protein counteracts the inhibition of the collagenase promoter by E1A and represses transformation. Oncogene 12: 1529–1535.
  • Stein, R. W., M. Corrigan, P. Yaciuk, J. Whelean, and E. Moran 1990. Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J. Virol. 64: 4421–4427.
  • Sun, P., and R. A. Maurer 1995. An inactivating point mutation demonstrates that interaction of cAMP response element binding protein (CREB) with the CREB binding protein is not sufficient for transcriptional activation. J. Biol. Chem. 270: 7041–7044.
  • Swope, D. L., C. L. Mueller, and J. C. Chrivia 1996. CREB-binding protein activates transcription through multiple domains. J. Biol. Chem. 271: 28138–28145.
  • Treier, M., D. Bohmann, and M. Mlodzik 1995. JUN cooperates with the ETS domain protein pointed to induce photoreceptor R7 fate in the Drosophila eye. Cell 83: 753–760.
  • Wasylyk, B., S. L. Hahn, and A. Giovane 1993. The Ets family of transcription factors. Eur. J. Biochem. 211: 7–18.
  • Wasylyk, B., C. Wasylyk, P. Flores, A. Begue, D. Leprince, and D. Stehelin 1990. The c-ets proto-oncogenes encode transcription factors that cooperate with c-Fos and c-Jun for transcriptional activation. Nature 346: 191–193.
  • Wasylyk, C., A. P. Bradford, A. Gutierrez-Hartmann, and B. Wasylyk 1997. Conserved mechanisms of Ras regulation of evolutionary related transcription factors, Ets1 and Pointed P2. Oncogene 14: 899–913.
  • Watson, D. K., M. J. McWilliams, P. Lapis, J. A. Lautenberger, C. W. Schweinfest, and T. S. Papas 1988. Mammalian ets-1 and ets-2 genes encode highly conserved proteins. Proc. Natl. Acad. Sci. USA 85: 7862–7866.
  • Xing, L., V. K. Gopal, and P. G. Quinn 1995. cAMP response element-binding protein (CREB) interacts with transcription factors IIB and IID. J. Biol. Chem. 270: 17488–17493.
  • Yang, B. S., C. A. Hauser, G. Henkel, M. S. Colman, C. Van Beveren, K. J. Stacey, D. A. Hume, R. A. Maki, and M. C. Ostrowski 1996. Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Mol. Cell Biol. 16: 538–547.
  • Yang, X. J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and Y. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382: 319–324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.