23
Views
202
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Notch Inhibition of E47 Supports the Existence of a Novel Signaling Pathway

, , , , , & show all
Pages 2230-2239 | Received 12 Sep 1997, Accepted 03 Jan 1998, Published online: 27 Mar 2023

REFERENCES

  • Arany, Z., D. Newsome, E. Oldread, D. M. Livingston, and R. Eckner 1995. A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374: 81–84.
  • Artavanis-Tsakonas, S., K. Matsuno, and M. E. Fortini 1995. Notch signaling. Science 268: 225–232.
  • Aster, J. C., E. S. Robertson, R. P. Hasserjian, J. R. Turner, E. Kieff, and J. Sklar 1997. Oncogenic forms of Notch1 lacking either the primary binding site for RPB-Jκ or nuclear localization sequences retain the ability to associate with RBP-Jκ and activate transcription. J. Biol. Chem. 272: 11336–11343.
  • Austin, C. P., D. E. Feldman, Ida J. A., Jr., and C. L. Cepko 1995. Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121: 3637–3650.
  • Axelrod, J. D., K. Matsuno, S. Artavanis-Tsakonas, and N. Perrimon 1996. Interaction between Wingless and Notch signaling pathways mediated by Dishevelled. Science 271: 1826–1832.
  • Bailey, A. M., and J. W. Posakony 1995. Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev. 9: 2609–2622.
  • Bain, G., E. C. Maandag, D. J. Izon, D. Amsen, A. M. Kruisbeek, B. C. Weintraub, I. Krop, M. S. Schlissel, A. J. Feeney, M. van Roon, M. van der Valk, H. P. J. te Riele, A. Berns, and C. Murre 1994. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79: 885–892.
  • Benezra, R. 1994. An intermolecular disulfide bond stabilizes E2A homodimers and is required for DNA binding at physiological temperature. Cell 79: 1057–1067.
  • Blaumueller, C. M., H. Qi, P. Zagouras, and S. Artavanis-Tsakonas 1998. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90: 281–291.
  • Brent, G. A., J. W. Harney, Y. Chen, R. L. Warne, D. D. Moore, and P. R. Larson 1989. Mutations of the rat growth hormone promoter which increase and decrease response to thyroid hormone define a consensus thyroid hormone response element. Mol. Endocrinol. 3: 1996–2004.
  • Busseau, I., R. J. Diederich, T. Xu, and S. Artavanis-Tsakonas 1994. A member of the Notch group of interacting loci, deltex, encodes a cytoplasmic basic protein. Genetics 136: 585–596.
  • Carter, R. S., P. Ordentlich, and T. Kadesch 1997. Selective utilization of basic helix-loop-helix–leucine zipper proteins at the immunoglobulin heavy-chain enhancer. Mol. Cell. Biol. 17: 18–23.
  • Chakravarti, D., V. J. LaMorte, M. C. Nelson, T. Nakajima, I. G. Schulman, H. Juguilon, M. Montminy, and R. M. Evans 1996. Role of CBP/P300 in nuclear receptor signaling. Nature 383: 99–103.
  • Chitnis, A., D. Henrique, J. Lewis, D. Ish-Horowicz, and C. Kintner 1995. Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 375: 761–766.
  • Choi, J. K., C.-P. Shen, H. S. Radomska, L. A. Eckhardt, and T. Kadesch 1996. Coordinate activation of the Ig-heavy chain and TdT loci in non-B cells. EMBO J. 15: 5014–5021.
  • Christensen, S., V. Kodoyianni, M. Bosenberg, L. Friedman, and J. Kimble 1996. lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development 122: 1373–1383.
  • Coffman, C. R., P. Skoglund, W. A. Harris, and C. R. Kintner 1993. Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 73: 659–671.
  • Conlon, R. A., A. G. Reaume, and J. Rossant 1995. Notch1 is required for the coordinate segmentation of somites. Development 12: 1533–1545.
  • Damm, K., C. C. Thompson, and R. M. Evans 1989. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature 339: 593–597.
  • Davis, K. D., T. J. Berrodin, J. E. Steimach, J. D. Winkler, and M. A. Lazar 1994. Endogenous RXRs can function as hormone receptors in pituitary cells. Mol. Cell. Biol. 14: 7105–7110.
  • Diederich, R. J., K. Matsuno, H. Hing, and S. Artavanis-Tsakonas 1994. Cytosolic interaction between deltex and Notch ankyrin repeats implicates deltex in the Notch signaling pathway. Development 120: 473–481.
  • Dou, S., X. Zeng, P. Cortes, H. Erdjument-Bromage, P. Tempst, T. Honjo, and L. D. Vales 1994. The recombination signal sequence-binding protein RBP-2N functions as a transcriptional repressor. Mol. Cell. Biol. 14: 3310–3319.
  • Eckner, R., T.-P. Yao, E. Oldread, and D. M. Livingston 1996. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10: 2478–2490.
  • Ellisen, L. W., J. Bird, D. C. West, A. L. Soreng, T. C. Reynolds, S. D. Smith, and J. Sklar 1991. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649–661.
  • Feig, L. A., and G. M. Cooper 1988. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8: 3235–3243.
  • Fortini, M. E., I. Rebay, L. A. Caron, and S. Artavanis-Tsakonas 1993. An activated Notch receptor blocks cell-fate commitment in the developing Drosophila eye. Nature 365: 555–557.
  • Fortini, M. E., and S. Artavanis-Tsakonas 1994. The suppressor of hairless protein participates in notch receptor signaling. Cell 79: 273–282.
  • Furukawa, T., S. Maruyama, M. Kawaichi, and T. Honjo 1992. The Drosophila homolog of the immunoglobulin recombination signal-binding protein regulates peripheral nervous system development. Cell 69: 1191–1197.
  • Furukawa, T., Y. Kobayakawa, K. Tamura, K. Kimura, M. Kawaichi, T. Tanimura, and T. Honjo 1995. Suppressor of hairless, the Drosophila homologue of RBP-J kappa, transactivates the neurogenic gene E(spl)m8. Jpn. J. Genet. 70: 505–524.
  • Gho, M., M. Lecourtois, G. Geraud, J. W. Posakony, and F. Schweisguth 1996. Subcellular localization of Suppressor of Hairless in Drosophila sense organ cells during Notch signaling. Development 122: 1673–1682.
  • Goodbourn, S. 1995. Notch takes a short cut. Nature 377: 288–289.
  • Gorman, M. J., and J. R. Girton 1992. A genetic analysis of deltex and its interaction with the Notch locus in Drosophila melanogaster. Genetics 13: 99–112.
  • Graham, F. L., and A. J. van der Eb 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52: 456–467.
  • Hagiwara, M., A. Alberts, P. Brindle, J. Meinkoth, J. Feramisco, T. Dent, M. Karin, S. Shenolikar, and M. Montminy 1992. Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell 70: 105–113.
  • Hasserjian, R. P., J. C. Aster, F. Davi, D. S. Weinberg, and J. Sklar 1996. Modulated expression of Notch1 during thymocyte development. Blood 88: 970–976.
  • Henrique, D., J. Adam, A. Myat, A. Chitnis, J. Lewis, and D. Ish-Horowicz 1995. Expression of a Delta homologue in prospective neurons in the chick. Nature 375: 787–790.
  • Henthorn, P., M. Kiledjian, and T. Kadesch 1990. Two distinct transcription factors that bind to the immunoglobulin enhancer μE5/kE2 motif. Science 247: 467–470.
  • Hsieh, J. J.-D., and S. D. Hayward 1995. Masking of the CBF1/RBPJκ transcriptional repression domain by Epstein-Barr virus EBNA2. Science 268: 560–563.
  • Hsieh, J. J.-D., T. Henkel, P. Salmon, E. Robey, M. G. Peterson, and S. D. Hayward 1996. Truncated mammalian Notch1 activates CBF1/RBPJκ-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Mol. Cell. Biol. 16: 952–959.
  • Hsieh, J. J.-D., D. E. Nofziger, G. Weinmaster, and S. D. Hayward 1997. Epstein-Barr virus immortalization: Notch2 interacts with CBF1 and blocks differentiation. J. Virol. 71: 1938–1945.
  • Ishibashi, M., K. Moriyoshi, Y. Sasai, K. Shiota, S. Nakanishi, and R. Kageyama 1994. Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J. 13: 1799–1805.
  • Jarriault, S., C. Brou, F. Logeat, E. H. Schroeter, R. Kopan, and A. Israel 1995. Signaling downstream of activated mammalian Notch. Nature (London) 377: 355–358.
  • Kamei, Y., L. Xu, T. Heinzel, J. Torchia, R. Kurokawa, B. Gloss, S. C. Lin, R. A. Heyman, D. W. Roxe, C. K. Glass, and M. G. Rosenfeld 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85: 403–414.
  • Kato, H., Y. Taniguchi, H. Kurooka, S. Minoguchi, T. Sakai, S. Nomura-Okazaki, K. Tamura, and T. Honjo 1997. Involvement of RBP-J in biological functions of mouse Notch1 and its derivatives. Development 124: 4133–4141.
  • Kong, Y., S. E. Johnson, E. J. Taparowsky, and S. F. Konieczny 1995. Ras p21Val inhibits myogenesis without altering the DNA binding or transcriptional activities of the myogenic basic helix-loop-helix factors. Mol. Cell. Biol. 15: 5205–5213.
  • Kopan, R., J. S. Nye, and H. Weintraub 1994. The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120: 2385–2396.
  • Kopan, R., E. H. Schroeter, H. Weintraub, and J. S. Nye 1996. Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc. Natl. Acad. Sci. USA 93: 1683–1688.
  • Lassar, A. B., R. L. Davis, W. E. Wright, T. Kadesch, C. Murre, A. Voronova, D. Baltimore, and H. Weintraub 1991. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 66: 305–315.
  • Lecourtois, M., and F. Schweisguth 1995. The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by Notch signaling. Genes Dev. 9: 2598–2608.
  • Lieber, T., S. Kidd, E. Alcamo, V. Corbin, and M. W. Young 1993. Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei. Genes Dev. 7: 1949–1965.
  • Lillie, J. W., and M. R. Green 1989. Transcription activation by the adenovirus E1a protein. Nature 338: 39–44.
  • Lindsell, C. E., C. J. Shawber, J. Boulter, and G. Weinmaster 1995. Jagged: a mammalian ligand that activates Notch1. Cell 80: 909–917.
  • Lu, F. M., and S. E. Lux 1996. Constitutively active human Notch1 binds to the transcription factor CBF1 and stimulates transcription through a promoter containing a CBF1-responsive element. Proc. Natl. Acad. Sci. USA 93: 5663–5667.
  • Lundblad, J. R., R. P. Kwok, M. E. Laurance, M. L. Harter, and R. H. Goodman 1995. Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator. Nature 374: 85–88.
  • Marais, R., J. Wynne, and R. Treisman 1993. The SRF accessory protein ELK-1 contains a growth factor regulated transcription domain. Cell 73: 381–393.
  • Matsuno, K., R. J. Diederich, M. J. Go, C. M. Blaumueller, and S. Artavanis-Tsakonas 1995. Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development 121: 2633–2644.
  • Matsuno, K., M. Go, X. Sun, D. Eastman, and S. Artavanis-Tsakonas 1997. Suppressor of Hairless-independent events in Notch signaling imply novel pathway elements. Development 124: 4265–4273.
  • Matsuno, K., D. S. Eastman, T. Mitsiades, A. M. Quinn, M. L. Carcanciu, P. Ordentlich, T. Kadesch, and S. Artavanis-Tsakonas. Human Deltex: a conserved regulator of Notch signaling. Nature Genet., in press.
  • McMahon, S. B., and J. G. Monroe 1995. Activation of the p21ras pathway couples antigen receptor stimulation to induction of the primary response gene egr-1 in B lymphocytes. J. Exp. Med. 181: 417–422.
  • Milner, L. A., A. Bigas, R. Kopan, C. Brashem-Stein, I. D. Bernstein, and D. I. K. Martin 1996. Inhibition of granulocytic differentiation by mNotch1. Proc. Natl. Acad. Sci. USA 93: 13014–13019.
  • Minden, A., A. Lin, F. X. Claret, A. Abo, and M. Karin 1995. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81: 1147–1157.
  • Nye, J. S., R. Kopan, and R. Axel 1994. An activated Notch suppresses neurogenesis and myogenesis but not gliogenesis in mammalian cells. Development 120: 2421–2430.
  • Oka, C., T. Nakano, A. Wakeham, J. L. de la Pompa, C. Mori, T. Sakai, S. Okazaki, M. Kawaichi, K. Shiota, T. W. Mak, and T. Honjo 1995. Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 121: 3291–3301.
  • Pampeno, C. L., and D. Meruelo 1996. A novel cDNA transcript expressed in fractionated X-irradiation-induced murine thymomas. Cell Growth Differ. 7: 1113–1123.
  • Pear, W. S., J. C. Aster, M. L. Scott, R. P. Hasserjian, B. Soffer, J. Sklar, and D. Baltimore 1996. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183: 2283–2291.
  • Puri, P. L., M. L. Avantaggiati, C. Balsano, N. Sang, A. Graessmann, A. Giordano, and M. Levrero 1997. p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. EMBO J. 16: 369–383.
  • Rebay, I., R. G. Fehon, and S. Artavanis-Tsakonas 1993. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell 74: 319–329.
  • Robey, E., D. Chang, A. Itano, D. Cado, H. Alexander, D. Lans, G. Weinmaster, and P. Salmon 1996. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87: 483–492.
  • Roehl, H., and J. Kimble 1993. Control of cell fate in C. elegans by a GLP-1 peptide consisting primarily of ankyrin repeats. Nature 364: 632–635.
  • Roehl, H., M. Bosenberg, R. Blelloch, and J. Kimble 1996. Roles of the RAM and ANK domains in signaling by the C. elegans GLP-1 receptor. EMBO J. 15: 7002–7012.
  • Sartorelli, V., J. Huang, Y. Hamamori, and L. Kedes 1997. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17: 1010–1026.
  • Sasai, Y., R. Kageyama, Y. Tagawa, R. Shigemoto, and S. Nakanishi 1992. Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and enhancer of split. Genes Dev. 6: 2620–2634.
  • Schlissel, M., A. Voronova, and D. Baltimore 1991. Helix-loop-helix transcription factor E47 activates germ-line immunoglobulin heavy-chain gene transcription and rearrangement in a pre-T-cell line. Genes Dev. 5: 1367–1376.
  • Shawber, C., D. Nofziger, J. J.-D. Hsieh, C. Lindsell, O. Bogler, D. Hayward, and G. Weinmaster 1996. Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development 122: 3765–3773.
  • Shen, C.-P., and T. Kadesch 1995. B-cell-specific DNA binding by an E47 homodimer. Mol. Cell. Biol. 15: 4518–4524.
  • Sloan, S. R., C.-P. Shen, R. McCarrick-Walmsley, and T. Kadesch 1996. Phosphorylation of E47 as a potential determinant of B-cell-specific activity. Mol. Cell. Biol. 16: 6900–6908.
  • Struhl, G., K. Fitzgerald, and I. Greenwald 1993. Intrinsic activity of the LIN-12 and Notch intracellular domains in vivo. Cell 60: 981–990.
  • Swiatek, P. J., C. E. Lindsell, F. F. del Amo, G. Weinmaster, and T. Gridley 1994. Notch1 is essential for postimplantation development in mice. Genes Dev. 8: 707–719.
  • Tabin, C., S. Bradlet, C. Bargmann, R. Weinberg, A. Papageorge, E. Scolnick, R. Dhar, D. Lowy, and E. Chang 1982. Mechanism of activation of a human oncogene. Nature 300: 143–149.
  • Tamura, K., Y. Taniguchi, S. Minoguchi, T. Sakai, T. Tun, T. Furukawa, and T. Honjo 1995. Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-Jκ/Su(H). Curr. Biol. 5: 1416–1423.
  • Treisman, R. 1994. Ternary complex factors: growth factor regulated transcriptional activators. Curr. Opin. Genet. Dev. 4: 96–101.
  • Wang, H.-G. H., G. Draetta, and E. Moran 1991. E1A induces phosphorylation of the retinoblastoma protein independently of direct physical association between the E1A and retinoblastoma products. Mol. Cell. Biol. 11: 4253–4265.
  • Wang, H.-G. H., Y. Rikitake, M. Corrigan Carter, P. Yaciuk, S. E. Abraham, B. Zerler, and E. Moran 1993. Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J. Virol. 67: 476–488.
  • Weintraub, H., V. J. Dwarki, I. Verma, R. Davis, S. Hollenberg, L. Snider, A. Lassar, and S. J. Tapscot 1991. Muscle-specific transcriptional activation by MyoD. Genes Dev. 5: 1377–1386.
  • Weyman, C. M., M. B. Ramocki, E. J. Taparowsky, and A. Wolfman 1997. Distinct signaling pathways regulate transformation and inhibition of skeletal muscle differentiation by oncogenic Ras. Oncogene 14: 697–704.
  • Whitmarsh, A. J., and R. J. Davis 1996. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J. Mol. Med. 74: 589–607.
  • Yuan, W., G. Condorelli, M. Caruso, A. Felsani, and A. Giordano 1996. Human p300 protein is a coactivator for the transcription factor MyoD. J. Biol. Chem. 271: 9009–9013.
  • Zagouras, P., S. Stifani, C. M. Blaumueller, M. L. Carcangiu, and S. Artavanis-Tsakonas 1995. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc. Natl. Acad. Sci. USA 92: 6414–6418.
  • Zhuang, Y., P. Soriano, and H. Weintraub 1994. The helix-loop-helix gene E2A is required for B cell development. Cell 79: 875–884.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.