22
Views
76
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

A Nuclear Matrix Protein Interacts with the Phosphorylated C-Terminal Domain of RNA Polymerase II

, , &
Pages 2406-2415 | Received 15 Sep 1997, Accepted 23 Jan 1998, Published online: 27 Mar 2023

REFERENCES

  • Akhtar, A., G. Faye, and D. L. Bentley 1996. Distinct activated and non-activated RNA polymerase II complexes in yeast. EMBO J. 15: 4654–4664.
  • Allison, L. A., M. Moyle, M. Shales, and C. J. Ingles 1985. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42: 599–610.
  • Allison, L. A., J. K.-C. Wong, V. D. Fitzpatrick, M. Moyle, and C. J. Ingles 1988. The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function. Mol. Cell. Biol. 8: 321–329.
  • Bartolomei, M. S., N. F. Halden, C. R. Cullen, and J. L. Corden 1988. Genetic analysis of the repetitive carboxyl-terminal domain of the largest subunit of mouse RNA polymerase II. Mol. Cell. Biol. 8: 330–339.
  • Baskaran, R., M. E. Dahmus, and J. Y. Wang 1993. Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain. Proc. Natl. Acad. Sci. USA 90: 11167–11171.
  • Basler, J., N. D. Hastie, D. Pietras, S. I. Matsui, A. A. Sandberg, and R. Berezney 1981. Hybridization of nuclear matrix attached deoxyribonucleic acid fragments. Biochemistry 20: 6921–6929.
  • Bauren, G., W. Q. Jiang, K. Bernholm, F. Gu, and L. Wieslander 1996. Demonstration of a dynamic, transcription-dependent organization of pre-mRNA splicing factors in polytene nuclei. J. Cell Biol. 133: 929–941.
  • Bauren, G., and L. Wieslander 1994. Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell 76: 183–192.
  • Belgrader, P., A. J. Siegel, and R. Berezney 1991. A comprehensive study on the isolation and characterization of the HeLa S3 nuclear matrix. J. Cell Sci. 98: 281–291.
  • Berezney, R., and D. S. Coffey 1974. Identification of a nuclear protein matrix. Biochem. Biophys. Res. Commun. 60: 1410–1417.
  • Berezney, R., and D. S. Coffey 1977. Nuclear matrix. Isolation and characterization of a framework structure from rat liver nuclei. J. Cell Biol. 73: 616–637.
  • Berezney, R., M. Mortillaro, H. Ma, C. Meng, J. Samarabandu, X. Wei, S. Somanathan, W. S. Liou, S. J. Pan, and P. C. Cheng 1996. Connecting nuclear architecture and genomic function. J. Cell. Biochem. 62: 223–226.
  • Berezney, R., M. J. Mortillaro, H. Ma, X. Wei, and J. Samarabandu 1995. The nuclear matrix: a structural milieu for genomic function. Int. Rev. Cytol. 162A: 1–65.
  • Beyer, A. L., and Y. N. Osheim 1988. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 2: 754–765.
  • Blencowe, B. J., R. Issner, J. Kim, P. McCaw, and P. A. Sharp 1995. New proteins related to the Ser-Arg family of splicing factors. RNA 1: 852–865.
  • Blencowe, B. J., J. A. Nickerson, R. Issner, S. Penman, and P. A. Sharp 1994. Association of nuclear matrix antigens with exon-containing splicing complexes. J. Cell Biol. 127: 593–607.
  • Bourquin, J. P., I. Stagljar, P. Meier, P. Moosmann, J. Silke, T. Baechi, O. Georgiev, and W. Schaffner 1997. A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II. Nucleic Acids Res. 25: 2055–2061.
  • Bregman, D. B., L. Du, Y. Li, S. Ribisi, and S. L. Warren 1994. Cytostellin distributes to nuclear regions enriched with splicing factors. J. Cell Sci. 107: 387–396.
  • Bregman, D. B., L. Du, S. Vanderzee, and S. L. Warren 1995. Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. J. Cell Biol. 129: 287–298.
  • Chabot, B., S. Bisotto, and M. Vincent 1995. The nuclear matrix phosphoprotein p255 associates with splicing complexes as part of the [U4/U6.U5] tri-snRNP particle. Nucleic Acids Res. 23: 3206–3213.
  • Cho, E. J., T. Takagi, C. R. Moore, and S. Buratowski 1997. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 11: 3319–3326.
  • Corden, J. L., and C. J. Ingles Carboxy-terminal domain of the largest subunit of eukaryotic RNA polymerase II Transcriptional regulation In: McKnight, S. L., and K. R. Yamamoto1199281–108Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Corden, J. L. 1990. Tails of RNA polymerase II. Trends Biochem. Sci. 15: 383–387.
  • Corden, J. L., D. L. Cadena, Ahearn J., Jr., and M. E. Dahmus 1985. A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. Proc. Natl. Acad. Sci. USA 82: 7934–7938.
  • Corden, J. L., and M. Patturajan 1997. A CTD function linking transcription to splicing. Trends Biochem. Sci. 22: 413–416.
  • Dahmus, M. E. 1995. Phosphorylation of the C-terminal domain of RNA polymerase II. Biochim. Biophys. Acta 1261: 171–182.
  • Dahmus, M. E. 1996. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271: 19009–19012.
  • Dantonel, J. C., K. G. Murthy, J. L. Manley, and L. Tora 1997. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 389: 399–402.
  • Desai, D., Y. Gu, and D. O. Morgan 1992. Activation of human cyclin-dependent kinases in vitro. Mol. Biol. Cell 3: 571–582.
  • Du, L., and S. L. Warren 1997. A functional interaction between the carboxy-terminal domain of RNA polymerase II and pre-mRNA splicing. J. Cell Biol. 136: 5–18.
  • Egyhazi, E., A. Ossoinak, A. Pigon, C. Holmgren, J. M. Lee, and A. L. Greenleaf 1996. Phosphorylation dependence of the initiation of productive transcription of Balbiani ring 2 genes in living cells. Chromosoma 104: 422–433.
  • Fay, F. S., K. L. Taneja, S. Shenoy, L. Lifshitz, and R. H. Singer 1997. Quantitative digital analysis of diffuse and concentrated nuclear distributions of nascent transcripts, SC35 and poly(A). Exp. Cell Res. 231: 27–37.
  • Fu, X. D. 1995. The superfamily of arginine/serine-rich splicing factors. RNA 1: 663–680.
  • Fu, X. D., and T. Maniatis 1990. Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature 343: 437–441.
  • Gebara, M. M., M. H. Sayre, and J. L. Corden 1997. Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription. J. Cell. Biochem. 64: 390–402.
  • Grande, M. A., I. Vanderkraan, L. Dejong, and R. Vandriel 1997. Nuclear distribution of transcription factors in relation to sites of transcription and RNA polymerase II. J. Cell Sci. 110: 1781–1791.
  • Gunnery, S., and M. B. Mathews 1995. Functional mRNA can be generated by RNA polymerase III. Mol. Cell. Biol. 15: 3597–3607.
  • He, D. C., T. Martin, and S. Penman 1991. Localization of heterogeneous nuclear ribonucleoprotein in the interphase nuclear matrix core filaments and on perichromosomal filaments at mitosis. Proc. Natl. Acad. Sci. USA 88: 7469–7473.
  • Iborra, F. J., A. Pombo, D. A. Jackson, and P. R. Cook 1996. Active RNA polymerases are localized within discrete transcription “factories” in human nuclei. J. Cell Sci. 109: 1427–1436.
  • Jackson, D. A., and P. R. Cook 1985. Transcription occurs at a nucleoskeleton. EMBO J. 4: 919–925.
  • Jackson, D. A., A. B. Hassan, R. J. Errington, and P. R. Cook 1993. Visualization of focal sites of transcription within human nuclei. EMBO J. 12: 1059–1065.
  • Kim, E., L. Du, D. B. Bregman, and S. L. Warren 1997. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. J. Cell Biol. 136: 19–28.
  • LeMaire, M. F., and C. S. Thummel 1990. Splicing precedes polyadenylation during Drosophila E74A transcription. Mol. Cell. Biol. 10: 6059–6063.
  • Marshall, N. F., J. M. Peng, Z. Xie, and D. H. Price 1996. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J. Biol. Chem. 271: 27176–27183.
  • Mattaj, I. W. 1994. RNA processing—splicing in space. Nature 372: 727–728.
  • McCracken, S., N. Fong, E. Rosonina, K. Yankulov, G. Brothers, D. Siderovski, A. Hessel, S. Foster, A. E. Program, S. Shuman, and D. L. Bentley 1997. 5′-capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 11: 3306–3318.
  • McCracken, S., N. Fong, K. Yankulov, S. Ballantyne, G. Pan, J. Greenblatt, S. D. Patterson, M. Wickens, and D. L. Bentley 1997. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385: 357–361.
  • Misteli, T., J. F. Caceres, and D. L. Spector 1997. The dynamics of a pre-mRNA splicing factor in living cells. Nature 387: 523–527.
  • Mortillaro, M. J., B. J. Blencowe, X. Y. Wei, H. Nakayasu, L. Du, S. L. Warren, P. A. Sharp, and R. Berezney 1996. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Natl. Acad. Sci. USA 93: 8253–8257.
  • Nakayasu, H., and R. Berezney 1989. Mapping replicational sites in the eucaryotic cell nucleus. J. Cell Biol. 108: 1–11.
  • Nakayasu, H., and R. Berezney 1991. Nuclear matrins: identification of the major nuclear matrix proteins. Proc. Natl. Acad. Sci. USA 88: 10312–10316.
  • Neugebauer, K. M., and M. B. Roth 1997. Distribution of pre-mRNA splicing factors at sites of RNA polymerase II transcription. Genes Dev. 11: 1148–1159.
  • Neugebauer, K. M., and M. B. Roth 1997. Transcription units as RNA processing units. Genes Dev. 11: 3279–3285.
  • Nickerson, J. A., B. J. Blencowe, and S. Penman 1995. The architectural organization of nuclear metabolism. Int. Rev. Cytol. 162A: 67–123.
  • Nonet, M., D. Sweetser, and R. A. Young 1987. Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell 50: 909–915.
  • O’Brien, T., S. Hardin, A. Greenleaf, and J. T. Lis 1994. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 370: 75–77.
  • Patturajan, M., and J. L. Corden. Unpublished observations.
  • Patturajan, M., R. J. Schulte, B. M. Sefton, R. Berezney, M. Vincent, O. Bensaude, S. L. Warren, and J. L. Corden 1997. Growth-related changes in phosphorylation of yeast RNA polymerase II. J. Biol. Chem. 273: 4689–4694.
  • Shuman, S. 1997. Origins of mRNA identity-capping enzymes bind to the phosphorylated C-terminal domain of RNA polymerase II. Proc. Natl. Acad. Sci. USA 94: 12758–12760.
  • Singer, R. H., and M. R. Green 1997. Compartmentalization of eukaryotic gene expression—causes and effects. Cell 91: 291–294.
  • Sisodia, S. S., B. Sollner-Webb, and D. W. Cleveland 1987. Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation. Mol. Cell. Biol. 7: 3602–3612.
  • Smale, S. T., and R. Tjian 1985. Transcription of herpes simplex virus tk sequences under the control of wild-type and mutant human RNA polymerase I promoters. Mol. Cell. Biol. 5: 352–362.
  • Spector, D. L. 1993. Macromolecular domains within the cell nucleus. Annu. Rev. Cell Biol. 9: 265–315.
  • Steinmetz, E. J. 1997. Pre-mRNA processing and the CTD of RNA polymerase II: the tail that wags the dog? Cell 89: 491–494.
  • Tanner, S., I. Stagljar, O. Georgiev, W. Schaffner, and J. P. Bourquin 1997. A novel SR-related protein specifically interacts with the carboxyl-terminal domain (CTD) of RNA polymerase II through a conserved interaction domain. Biol. Chem. 378: 565–571.
  • Thompson, N. E., T. H. Steinberg, D. B. Aronson, and R. R. Burgess 1989. Inhibition of in vivo and in vitro transcription by monoclonal antibodies prepared against wheat germ RNA polymerase II that react with the heptapeptide repeat of eukaryotic RNA polymerase II. J. Biol. Chem. 264: 11511–11520.
  • Vincent, M., P. Lauriault, M. F. Dubois, S. Lavoie, O. Bensaude, and B. Chabot 1996. The nuclear matrix protein p255 is a highly phosphorylated form of RNA polymerase II largest subunit which associates with spliceosomes. Nucleic Acids Res. 24: 4649–4652.
  • Vogelstein, B., and B. F. Hunt 1982. A subset of small nuclear ribonucleoprotein particle antigens is a component of the nuclear matrix. Biochem. Biophys. Res. Commun. 105: 1224–1232.
  • Wansink, D. G., W. Schul, I. van der Kraan, B. van Steensel, R. van Driel, and L. de Jong 1993. Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J. Cell Biol. 122: 283–293.
  • Weeks, J. R., S. E. Hardin, J. Shen, J. M. Lee, and A. L. Greenleaf 1993. Locus-specific variation in phosphorylation state of RNA polymerase II in vivo: correlations with gene activity and transcript processing. Genes Dev. 7: 2329–2344.
  • West, M. L., and J. L. Corden 1995. Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutants. Genetics 140: 1223–1233.
  • Wu, J. Y., and T. Maniatis 1993. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75: 1061–1070.
  • Xing, Y., C. V. Johnson, Moen P. T., Jr., J. A. McNeil, and J. Lawrence 1995. Nonrandom gene organization: structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J. Cell Biol. 131: 1635–1647.
  • Yue, Z. Y., E. Maldonado, R. Pillutla, H. Cho, D. Reinberg, and A. J. Shatkin 1997. Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. Proc. Natl. Acad. Sci. USA 94: 12898–12903.
  • Yuryev, A., M. Patturajan, Y. Litingtung, R. V. Joshi, C. Gentile, M. Gebara, and J. L. Corden 1996. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc. Natl. Acad. Sci. USA 93: 6975–6980.
  • Zehring, W. A., J. M. Lee, J. R. Weeks, R. S. Jokerst, and A. L. Greenleaf 1988. The C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro. Proc. Natl. Acad. Sci. USA 85: 3698–3702.
  • Zeitlin, S., A. Parent, S. Silverstein, and A. Efstratiadis 1987. Pre-mRNA splicing and the nuclear matrix. Mol. Cell. Biol. 7: 111–120.
  • Zeitlin, S., R. C. Wilson, and A. Efstratiadis 1989. Autonomous splicing and complementation of in vivo-assembled spliceosomes. J. Cell Biol. 108: 765–777.
  • Zeng, C., E. Kim, S. L. Warren, and S. M. Berget 1997. Dynamic relocation of transcription and splicing factors dependent upon transcriptional activity. EMBO J. 16: 1401–1412.
  • Zhang, G., K. L. Taneja, R. H. Singer, and M. R. Green 1994. Localization of pre-mRNA splicing in mammalian nuclei. Nature 372: 809–812.
  • Zhang, J., and J. L. Corden 1991. Identification of phosphorylation sites in the repetitive carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J. Biol. Chem. 266: 2290–2296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.