7
Views
35
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Molecular Evolution Allows Bypass of the Requirement for Activation Loop Phosphorylation of the Cdc28 Cyclin-Dependent Kinase

&
Pages 2923-2931 | Received 18 Dec 1997, Accepted 23 Feb 1998, Published online: 28 Mar 2023

REFERENCES

  • Canagarajah, B. J., A. Khokhlatchev, M. H. Cobb, and E. J. Goldsmith 1997. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90: 859–869.
  • Cismowski, M. J., G. M. Laff, M. J. Solomon, and S. I. Reed 1995. KIN28 encodes a C-terminal domain kinase that controls mRNA transcription in Saccharomyces cerevisiae but lacks cyclin-dependent kinase-activating kinase (CAK) activity. Mol. Cell. Biol. 15: 2983–2992.
  • Cross, F., J. Roberts, and H. Weintraub 1989. Simple and complex cell cycles. Annu. Rev. Cell Biol. 5: 341–395.
  • Cross, F. R. 1990. Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-I arrest and is independent of the mating-pheromone signalling pathway. Mol. Cell. Biol. 10: 6482–6490.
  • Cross, F. R. 1995. Starting the cell cycle: what’s the point? Curr. Opin. Cell Biol. 7: 790–797.
  • Cross, F. R. 1997. ’Marker swap’ plasmids: convenient tools for budding yeast molecular genetics. Yeast 13: 647–653.
  • Dahmann, C., J. F. X. Diffley, and K. A. Nasmyth 1995. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr. Biol. 5: 1257–1269.
  • DeBondt, H. L., J. Rosenblatt, J. Jancarik, H. D. Jones, D. O. Morgan, and S. H. Kim 1996. Crystal structure of cyclin-dependent kinase 2. Nature 363: 595–602.
  • Desai, D., H. C. Wessling, R. P. Fisher, and D. O. Morgan 1995. Effects of phosphorylation by CAK on cyclin binding by CDC2 and CDK2. Mol. Cell. Biol. 15: 345–350.
  • Deshaies, R. J., and M. Kirschner 1995. G1 cyclin-dependent activation of p34CDC28 (Cdc28p) in vitro. Proc. Natl. Acad. Sci. USA 92: 1182–1186.
  • Donovan, J. D., J. H. Toyn, A. L. Johnson, and L. H. Johnston 1994. P40SDB25, a putative CDK inhibitor, has a role in the M/G1 transition in Saccharomyces cerevisiae. Genes Dev. 8: 1640–1653.
  • Espinoza, F. H., A. Farrell, H. Erdjument-Bromage, P. Tempst, and D. O. Morgan 1996. A cyclin-dependent kinase-activating kinase (CAK) in budding yeast unrelated to vertebrate CAK. Science 273: 1714–1717.
  • Fisher, R. P., P. Jin, H. M. Chamberlin, and D. O. Morgan 1995. Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell 83: 47–57.
  • Gould, K. L., S. Moreno, D. J. Owen, S. Sazer, and P. Nurse 1991. Phosphorylation at Thr167 is required for Schizosaccharomyces pombe p34cdc2 function. EMBO J. 10: 3297–3309.
  • Grandin, N., and S. I. Reed 1993. Differential function and expression of Saccharomyces cerevisiae B-type cyclins in mitosis and meiosis. Mol. Cell. Biol. 13: 2113–2125.
  • Guthrie, C., and G. R. Fink 1991. Guide to yeast genetics and molecular biology. Methods in enzymology 194 Academic Press, Inc., New York, N.Y.
  • Harper, J. W., and S. J. Elledge 1998. The role of Cdk7 in CAK function, a retro-retrospective. Genes Dev. 12: 285–289.
  • Horton, R. M., H. D. Hunt, S. N. Ho, J. K. Pullen, and L. R. Pease 1989. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77: 61–68.
  • Jeffrey, P. D., A. A. Russo, K. Polyak, E. Gibbs, J. Hurwitz, J. Massagu, and N. P. Pavletich 1995. Mechanism of CDK activation revealed by the structure of a cyclin A-CDK2 complex. Nature 376: 313–320.
  • Johnson, L. N., M. E. M. Noble, and D. J. Owen 1996. Active and inactive protein kinases: structural basis for regulation. Cell 85: 149–158.
  • Kaldis, P., A. Sutton, and M. J. Solomon 1996. The Cdk-activating kinase (CAK) from budding yeast. Cell 86: 553–564.
  • King, R. W., R. J. Deshaies, J. M. Peters, and M. W. Kirschner 1996. How proteolysis drives the cell cycle. Science 274: 1652–1659.
  • Leung, D. W., E. Chen, and D. V. Goeddel 1989. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1: 11–15.
  • Levine, K., K. Huang, and F. R. Cross 1996. Saccharomyces cerevisiae G1 cyclins differ in their intrinsic functional specificities. Mol. Cell. Biol. 16: 6794–6803.
  • Levine, K., L. J. W. M. Oehlen, and F. R. Cross 1998. Isolation and characterization of new alleles of the cyclin-dependent kinase gene CDC28 with cyclin-specific functional and biochemical defects. Mol. Cell. Biol. 18: 290–302.
  • Lew, D. J., and S. I. Reed 1993. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol. 120: 1305–1320.
  • Lim, H. H., C. J. Loy, S. Zaman, and U. Surana 1996. Dephosphorylation of threonine 169 of Cdc28 is not required for exit from mitosis but may be necessary for start in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 4573–4583.
  • Lorca, T., J.-C. Labbe, A. Devault, D. Fesquet, J.-P. Capony, J.-C. Cavadore, F. le Bouffant, and M. Doree 1992. Dephosphorylation of cdc2 on threonine 161 is required for cdc2 kinase inactivation and normal anaphase. EMBO J. 11: 2381–2390.
  • Martinez, A.-M., M. Afshar, F. Martin, J.-C. Cavadore, J.-C. Labbe, and M. Doree 1997. Dual phosphorylation of the T-loop in cdk7: its role in controlling cyclin H binding and CAK activity. EMBO J. 16: 343–354.
  • Mendenhall, M. D. 1993. An inhibitor of p34CDC28 protein kinase activity from Saccharomyces cerevisiae. Science 259: 216–219.
  • Nasmyth, K. 1996. At the heart of the budding yeast cell cycle. Trends Genet. 12: 405–412.
  • Nugroho, T. T., and M. D. Mendenhall 1994. An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells. Mol. Cell. Biol. 14: 3320–3328.
  • Oehlen, L. J. W. M., and F. R. Cross 1994. G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle. Genes Dev. 8: 1058–1070.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein 1983. Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol. 101: 228–245.
  • Poon, R. Y. C., and T. Hunter 1995. Dephosphorylation of Cdk2 Thr160 by the cyclin-dependent kinase-interacting phosphatase KAP in the absence of cyclin. Science 270: 90–93.
  • Pringle, J. R., and L. H. Hartwell 1981. The Saccharomyces cerevisiae cell cycle The molecular biology of the yeast Saccharomyces: life cycle and inheritance. In: Strathern, J. N., E. W. Jones, and J. R. Broach97–142Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Richardson, H. E., C. Wittenberg, F. Cross, and S. I. Reed 1989. An essential G1 function for cyclin-like proteins in yeast. Cell 59: 1127–1133.
  • Rothstein, R. 1983. One-step gene disruption in yeast. Methods Enzymol. 101: 202–211.
  • Russo, A. A., P. D. Jeffrey, and N. P. Pavletich 1996. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nature Struct. Biol. 3: 696–700.
  • Schwob, E., T. Bohm, M. D. Mendenhall, and K. Nasmyth 1994. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79: 233–244.
  • Shinde, U. P., J. J. Liu, and M. Inouye 1997. Protein memory through altered folding mediated by intramolecular chaperones. Nature 389: 520–522.
  • Sikorski, R. S., and J. D. Boeke 1990. In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol. 194: 302–318.
  • Stimmer, W. P. C. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389–391.
  • Surana, U., H. Robitsch, C. Price, T. Schuster, I. Fitch, A. B. Futcher, and K. Nasmyth 1991. The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65: 145–161.
  • Sutton, A., and R. Freiman 1997. The Cak1p protein kinase is required at G1/S and G2/M in the budding yeast cell cycle. Genetics 147: 57–71.
  • Tassan, J. P., M. Jaquenoud, A. M. Fry, S. Frutiger, G. J. Hughes, and E. A. Nigg 1995. In vitro assembly of a functional human CDK7-cyclin H complex requires MAT1, a novel 36 kDa RING finger protein. EMBO J. 14: 5608–5617.
  • Thuret, J. Y., J. G. Valay, G. Faye, and C. Mann 1996. Civ1 (CAK in vivo), a novel Cdk-activating kinase. Cell 86: 565–576.
  • Tyers, M., G. Tokiwa, and B. Futcher 1993. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12: 1955–1968.
  • Tyers, M. 1996. The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for Cln G1 cyclin function at start. Proc. Natl. Acad. Sci. USA 93: 7772–7776.
  • Wagner, M., M. Pierce, and E. Winter 1997. The CDK-activating kinase CAK1 can dosage suppress sporulation defects of smk1 MAP kinase mutants and is required for spore wall morphogenesis in Saccharomyces cerevisiae. EMBO J. 16: 1305–1317.
  • Wittenberg, C., and S. I. Reed 1989. Conservation of function and regulation within the Cdc28/cdc2 protein kinase family: characterization of the human Cdc2Hs protein kinase in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 4064–4068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.