37
Views
85
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Carbon Source-Dependent Phosphorylation of Hexokinase PII and Its Role in the Glucose-Signaling Response in Yeast

, , &
Pages 2940-2948 | Received 10 Nov 1997, Accepted 17 Feb 1998, Published online: 28 Mar 2023

REFERENCES

  • Bailey, R. B., and A. Woodward 1984. Isolation and characterization of a pleiotropic glucose repression resistant mutant of Saccharomyces cerevisiae. Mol. Gen. Genet. 193: 507–512.
  • Bergmeyer, H. U.. 1974. Methods of enzymatic analysis, 2nd ed., p. 473. Verlag Chemie GmbH, Weinheim, Germany.
  • Celenza, J. L., and M. Carlson 1986. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233: 1175–1180.
  • Conklin, D. S., C. Kung, and M. R. Culbertson 1993. The COT2 gene is required for glucose-dependent divalent cation transport in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 2041–2049.
  • Davis, B. J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121: 404–427.
  • De Winde, J. H., M. Crauwels, S. Hohmann, J. M. Thevelein, and J. Winderickx 1996. Differential requirements of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. Eur. J. Biochem. 241: 633–643.
  • Easterby, J. S., and M. A. Rosemeyer 1972. Purification and subunit interactions of yeast hexokinase. Eur. J. Biochem. 28: 241–252.
  • Entian, K.-D. 1980. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in catabolite repression in yeast. Mol. Gen. Genet. 178: 633–637.
  • Entian, K.-D., and F. K. Zimmermann 1980. Glycolytic enzymes and intermediates in carbon catabolite repression mutants of Saccharomyces cerevisiae. Mol. Gen. Genet. 177: 345–350.
  • Feng, Z., S. E. Wilson, Z. Y. Peng, K. K. Schlender, E. M. Reiman, and R. J. Trumbly 1991. The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J. Biol. Chem. 266: 23796–23801.
  • Fernández, R., P. Herrero, E. Fernández, M. T. Fernández, Y. S. López-Boado, and F. Moreno 1988. Autophosphorylation of yeast hexokinase PII. J. Gen. Microbiol. 134: 2493–2498.
  • Frederick, D. L., and K. Tatchell 1996. The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth. Mol. Cell. Biol. 16: 2922–2931.
  • Furman, T. C., and K. E. Neet 1983. Association equilibria and reacting enzyme gel filtration of yeast hexokinase. J. Biol. Chem. 258: 4930–4936.
  • Gancedo, J. M. 1992. Carbon catabolite repression in yeast. Eur. J. Biochem. 206: 297–313.
  • Gascon, S., and J. O. Lampen 1968. Purification of the internal invertase of yeast. J. Biol. Chem. 243: 1573–1577.
  • Gietz, R. D., and A. Sugino 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527–534.
  • Goding, J. W. 1986. Monoclonal antibodies: principles and practice2nd ed. Academic Press, New York, N.Y.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease 1989. Site-directed mutagenesis by overlap extension using polymerase chain reaction. Gene 77: 51–59.
  • Hoggett, G., and G. L. Kellett 1992. Kinetics of the monomer-dimer reaction of yeast hexokinase PI. Biochem. J. 287: 567–572.
  • Ito, H., K. Jukuda, K. Murata, and A. Kimura 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.
  • Johnston, M., and M. Carlson Regulation of carbon and phosphate utilization Gene expression: the molecular and cellular biology of the yeast Saccharomyces In: Brosch, J., et al.21992193–28Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Keleher, C. A., M. J. Redd, J. Schultz, M. Carlson, and A. D. Johnson 1992. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68: 708–719.
  • Kriegel, T. M., J. Rush, A. B. Vojtek, D. Clifton, and D. G. Fraenkel 1994. In vivo phosphorylation site of hexokinase 2 in Saccharomyces cerevisiae. Biochemistry 33: 148–152.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227: 680–685.
  • Lutfiyya, L. L., and M. Johnston 1996. Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol. Cell. Biol. 16: 4790–4797.
  • Ma, H., L. M. Bloom, C. T. Walsh, and D. Botstein 1989. The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 5643–5649.
  • Ma, H., L. M. Bloom, S. Dakin, C. T. Walsh, and D. Botstein 1989. The 15 N-terminal amino acids of hexokinase II are not required for in vivo function: analysis of a truncated form of hexokinase II in Saccharomyces cerevisiae. Proteins 5: 218–223.
  • Martı́nez-Campa, C., P. Herrero, M. Ramı́rez, and F. Moreno 1996. Molecular analysis of the promoter region of the hexokinase 2 gene of Saccharomyces cerevisiae. FEMS Lett. 137: 69–74.
  • Matsumoto, K., T. Yoshimatsu, and Y. Oshima 1983. Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. J. Bacteriol. 153: 1405–1414.
  • Mayes, E. L., J. G. Hoggett, and G. L. Kellett 1983. The binding of glucose to native and proteolytically modified yeast hexokinase PI. Eur. J. Biochem. 133: 127–134.
  • Nehlin, J. O., and H. Ronne 1990. Yeast MIG1 repressor is related to the mammalian early growth response and Wilm’s tumour finger proteins. EMBO J. 9: 2891–2898.
  • Neigeborn, L., and M. Carlson 1987. Mutations causing constitutive invertase synthesis in yeast: genetic interactions with snf mutations. Genetics 115: 247–253.
  • Ohkura, H., N. Kinoshita, S. Minatani, S. Toda, and M. Yanagida 1989. The fission yeast dis2+ gene required for chromosome disjoining encodes one of two putative type 1 protein phosphatases. Cell 57: 997–1007.
  • Özcan, S., K. Freidel, A. Leuker, and M. Ciriacy 1993. Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae. J. Bacteriol. 175: 5520–5528.
  • Özcan, S., and M. Johnston 1995. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol. Cell. Biol. 15: 1564–1572.
  • Ronne, H. 1995. Glucose repression in fungi. Trends Genet. 11: 12–17.
  • Rose, M., W. Albig, and K.-D. Entian 1991. Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII. Eur. J. Biochem. 199: 511–518.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulson 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.
  • Sanz, P., A. Nieto, and J. A. Prieto 1996. Glucose repression may involve processes with different sugar kinase requirements. J. Bacteriol. 178: 4721–4723.
  • Sherman, F., G. R. Fink, and J. B. Hicks 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Thevelein, J. M., and S. Hohmann 1995. Trehalose synthase: guard to the gate of glycolysis in yeast. Trends Biochem. Sci. 20: 3–10.
  • Towbin, H., T. Staehelin, and J. Gordon 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U.S.A. 76: 4350–4354.
  • Treitel, M. A., and M. Carlson 1995. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc. Natl. Acad. Sci. USA 92: 3132–3136.
  • Tu, J., and M. Carlson 1994. The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 6789–6796.
  • Tu, J., and M. Carlson 1995. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 14: 5939–5946.
  • Vallier, L. G., D. Coons, L. F. Bisson, and M. Carlson 1994. Altered regulatory responses to glucose are associated with a glucose transport defect in grr1 mutants of Saccharomyces cerevisiae. Genetics 136: 1279–1285.
  • Vojtek, A. B., and D. G. Fraenkel 1990. Phosphorylation of yeast hexokinases. Eur. J. Biochem. 190: 371–375.
  • Williams, F. E., U. Varanasi, and R. J. Trumbly 1991. The CYC8 and TUP1 proteins involved in glucose repression in Saccharomyces cerevisiae are associated with a protein complex. Mol. Cell. Biol. 11: 3307–3316.
  • Womack, F., and S. P. Colowick 1978. Catalytic activity with associated and dissociated forms of the yeast hexokinases. Arch. Biochem. Biophys. 191: 742–747.
  • Woolfitt, A. R., G. L. Kellett, and J. G. Hoggett 1988. The binding of glucose and nucleotides to hexokinase from Saccharomyces cerevisiae. Biochim. Biophys. Acta 952: 238–243.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.