74
Views
369
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Regulatory Particle of the Saccharomyces cerevisiae Proteasome

, , &
Pages 3149-3162 | Received 01 Dec 1997, Accepted 09 Mar 1998, Published online: 28 Mar 2023

REFERENCES

  • Adams, G. M., S. Falke, A. L. Goldberg, C. A. Slaughter, G. N. DeMartino, and E. P. Gogol 1997. Structural and functional effects of PA700 and modulator protein on proteasomes. J. Mol. Biol. 273: 646–657.
  • Akiyama, K., K. Yokota, S. Kagawa, N. Shimbara, G. N. DeMartino, C. A. Slaughter, C. Noda, and K. Tanaka 1995. cDNA cloning of a new putative ATPase subunit p45 of the human 26S proteasome, a homolog of yeast Sug1. FEBS Lett. 363: 151–156.
  • Armon, T., D. Ganoth, and A. Hershko 1990. Assembly of the 26S complex that degrades proteins ligated to ubiquitin is accompanied by the formation of ATPase activity. J. Biol. Chem. 265: 20723–20726.
  • Baker, R. T., J. W. Tobias, and A. Varshavsky 1992. Ubiquitin-specific proteases of S. cerevisiae. Cloning of UBP2 and UBP3 and functional analysis of the UBP gene family. J. Biol. Chem. 267: 23364–23375.
  • Bauer, V. W., J. C. Swaffield, S. A. Johnston, and M. T. Andrews 1996. CADp44: a novel regulatory subunit of the 26S proteasome and the mammalian homolog of ySug2p. Gene 181: 63–69.
  • Boldin, M. P., I. L. Mett, and D. Wallach 1995. A protein related to a proteasomal subunit binds to the intracellular domain of the p55 TNF receptor upstream to its death domain. FEBS Lett. 367: 39–44.
  • Burns, N., B. Grimwade, P. B. Ross-MacDonald, E. Y. Choi, K. Finberg, G. S. Roeder, and M. Snyder 1994. Large-scale analysis of gene expression, protein localization, and gene disruption in S. cerevisiae. Genes Dev. 8: 1087–1105.
  • Campbell, C. L., N. Tanaka, K. H. White, and P. E. Thorsness 1994. Mitochondrial morphological and functional defects in yeast caused by yme1 are suppressed by mutation of a 26S protease subunit homologue. Mol. Biol. Cell 5: 899–905.
  • Ciechanover, A. 1994. The ubiquitin-proteasome proteolytic pathway. Cell 79: 13–21.
  • Claret, F. X., M. Hibi, S. Dhut, T. Toda, and M. Karin 1996. A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature 383: 453–457.
  • Confalonieri, F., and M. Duguet 1995. A 200-amino acid ATPase module in search of a basic function. Bioessays 17: 639–650.
  • Coux, O., K. Tanaka, and A. L. Goldberg 1996. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65: 801–847.
  • Dawson, S. P., J. E. Arnold, N. J. Mayer, S. E. Reynolds, M. A. Billett, C. Gordon, L. Colleaux, P. M. Kloetzel, K. Tanaka, and R. J. Mayer 1995. Developmental changes of the 26S proteasome in abdominal intersegmental muscles of Manduca sexta during programmed cell death. J. Biol. Chem. 270: 1850–1858.
  • DeMarini, D. J., F. R. Papa, S. Swaminathan, D. Ursic, T. P. Rasmussen, M. R. Culbertson, and M. Hochstrasser 1995. The yeast SEN3 gene encodes a regulatory subunit of the 26S proteasome complex required for ubiquitin-dependent protein degradation in vivo. Mol. Cell. Biol. 15: 6311–6321.
  • DeMartino, G. N., C. R. Moomaw, O. P. Zagnitko, R. J. Proske, C. P. Ma, S. J. Afendis, J. C. Swaffield, and C. A. Slaughter 1994. PA700, an ATP-dependent activator of the 20S proteasome, is an ATPase containing multiple members of a nucleotide binding protein family. J. Biol. Chem. 269: 20878–20884.
  • Deshpande, K. L., V. A. Fried, M. E. Ando, and R. G. Webster 1987. Glycosylation affects cleavage of an H6N2 influenza virus hemagglutinin and regulates virulence. Proc. Natl. Acad. Sci. USA 84: 36–40.
  • Deveraux, Q., C. Jensen, and M. Rechsteiner 1995. Molecular cloning and expression of a 26S proteasome subunit enriched in dileucine repeats. J. Biol. Chem. 270: 23726–23729.
  • Deveraux, Q., V. Ustrell, C. Pickart, and M. Rechsteiner 1994. A 26S subunit that binds ubiquitin conjugates. J. Biol. Chem. 269: 7059–7061.
  • Dubiel, W., K. Ferrell, R. Dumdey, S. Standera, S. Prehn, and M. Rechsteiner 1995. Molecular cloning and expression of subunit 12: a non-MCP and non-ATPase subunit of the 26S protease. FEBS Lett. 363: 97–100.
  • Dubiel, W., K. Ferrell, G. Pratt, and M. Rechsteiner 1992. Subunit 4 of the 26S protease is a member of a novel eukaryotic ATPase family. J. Biol. Chem. 267: 22669–22702.
  • Dubiel, W., K. Ferrell, and M. Rechsteiner 1993. Peptide sequencing identifies MSS1, a modulator of HIV Tat-mediated transactivation, as subunit 7 of the 26S protease. FEBS Lett. 323: 276–278.
  • Dubiel, W., K. Ferrell, and M. Rechsteiner 1995. Subunits of the regulatory complex of the 26S proteasome. Mol. Biol. Rep. 21: 27–34.
  • Falquet, L., N. Paquet, S. Frutiger, G. J. Hughes, K. Hoang-Van, and J. C. Jaton 1995. cDNA cloning of a human 100 kDa deubiquitinating enzyme: the deubiquitinase belongs to the ubiquitin C-terminal hydrolase family 2 (UCH2). FEBS Lett. 376: 233–237.
  • Finley, D., E. Özkaynak, and A. Varshavsky 1987. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48: 1035–1046.
  • Fried, V. A. 1981. Membrane biogenesis: evidence that a soluble chimeric polypeptide can serve as a precursor of a mutant lac permease in E. coli. J. Biol. Chem. 256: 244–252.
  • Fu, H., S. Sadis, D. M. Rubin, M. H. Glickman, S. van Nocker, D. Finley, and R. D. Vierstra 1998. Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26S proteasome subunit Mcb1. J. Biol. Chem. 273: 1970–1989.
  • Fujimuro, M., K. Tanaka, H. Yokosawa, and A. Toh-e 1998. Son1p is a component of the 26S proteasome of the yeast Saccharomyces cerevisiae. FEBS Lett. 423: 149–154.
  • Fujiwara, T., T. K. Watanabe, K. Tanaka, C. A. Slaughter, and G. N. DeMartino 1996. cDNA cloning of p42, a shared subunit of two proteasome regulatory proteins, reveals a novel member of the AAA protein family. FEBS Lett. 387: 184–188.
  • Gerlinger, U. M., M. Hoffmann, D. H. Wolf, and W. Hilt 1997. Yeast cycloheximide-resistant crl mutants are proteasome mutants defective in protein degradation. Mol. Biol. Cell 8: 2487–2499.
  • Ghislain, M., A. Udvardy, and C. Mann 1993. S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase. Nature 366: 358–361.
  • Gietz, R. D., R. H. Schiestl, A. R. Willems, and R. A. Woods 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355–360.
  • Gietz, R. D., and A. Sugino 1988. New yeast-E. coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527–534.
  • Gorbalenya, A. E., and E. V. Koonin 1989. Viral proteins containing the NTP binding pattern. Nucleic Acids Res. 17: 8413–8437.
  • Gorbalenya, A. E., E. V. Koonin, A. P. Donchenko, and V. M. Blinov 1989. Two related superfamilies of putative helicases involved in replication, repair, and expression of DNA and RNA genomes. Nucleic Acids Res. 17: 4713–4729.
  • Gordon, C., G. McGurk, P. Dillon, C. Rosen, and N. D. Hastie 1993. Defective mitosis due to a mutation in the gene for a fission yeast 26S protease subunit. Nature 366: 355–357.
  • Gottesmann, S., S. Wickner, and M. R. Maurizi 1997. Protein quality control: triage by chaperones and proteases. Genes Dev. 11: 815–823.
  • Gridley, T., R. Jaenisch, and M. G. Maguire 1991. The murine Mov-34 gene: full length cDNA and genomic organization. Genomics 11: 501–507.
  • Groll, M., L. Ditzel, J. Löwe, D. Stock, M. Bochtler, H. D. Bartunik, and R. Huber 1997. Structure of 20S proteasome from yeast at a 2.4 Å resolution. Nature 386: 463–471.
  • Hampton, R. Y., R. G. Gardner, and J. Rine 1996. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7: 2029–2044.
  • Haracska, L., and A. Udvardy 1995. Cloning and sequencing a non-ATPase subunit of the regulatory complex of the Drosophila 26S protease. Eur. J. Biochem. 231: 720–725.
  • Haracska, L., and A. Udvardy 1997. Mapping the ubiquitin-binding domains in the p54 regulatory complex subunit of the Drosophila 26S protease. FEBS Lett. 412: 331–336.
  • Hegde, A. N., K. Inokuchi, W. Pei, A. Casadio, M. Ghirardi, E. R. Kandel, and J. H. Schwartz 1997. Ubiquitin C-terminal hydrolase is an immediate early gene essential for long term facilitation in Aplysia. Cell 89: 115–126.
  • Hochstrasser, M. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30: 405–439.
  • Hoffman, L., G. Pratt, and M. Rechsteiner 1992. Multiple forms of the 20S multicatalytic and the 26S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate. J. Biol. Chem. 267: 22362–22368.
  • Hoffman, L., and M. Rechsteiner 1994. Activation of the multicatalytic protease. J. Biol. Chem. 269: 16890–16895.
  • Hoffman, L., and M. Rechsteiner 1997. Molecular cloning of subunit 9 of the 26S proteasome. FEBS Lett. 404: 179–184.
  • Hoffman, L., and M. Rechsteiner 1996. Nucleotidase activities of the 26S proteasome and its regulatory complex. J. Biol. Chem. 271: 32538–32545.
  • Johnson, E. S., P. C. Ma, I. M. Ota, and A. Varshavsky 1995. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270: 17442–17456.
  • King, R. W., R. J. Deshaies, J. M. Peters, and M. W. Kirshner 1996. How proteolysis drives the cell cycle. Science 274: 1652–1659.
  • Kominami, K., G. N. DeMartino, C. R. Moomaw, C. A. Slaughter, N. Shimbara, M. Fujimuro, H. Yokosawa, H. Hisamatsu, N. Tanahashi, Y. Shimizu, K. Tanaka, and A. Toh-e 1995. Nin1p, a regulatory subunit of the 26S proteasome, is necessary for activation of Cdc28 kinase of S. cerevisiae. EMBO J. 14: 3105–3115.
  • Kominami, K., N. Okura, M. Kawamura, G. N. DeMartino, C. A. Slaughter, N. Shimbara, C. H. Chung, M. Fujimura, H. Yokosawa, Y. Shimizu, N. Tanahashi, K. Tanaka, and A. Toh-e 1997. Yeast counterparts of subunits S5a and p58 (S3) of the human 26S proteasome are encoded by two multicopy suppressors of nin1-1. Mol. Biol. Cell 8: 171–187.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
  • Lam, A., and R. Cohen. Personal communication.
  • Lam, Y. A., G. N. DeMartino, C. M. Pickart, and R. E. Cohen 1997. Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of the 26S proteasome. J. Biol. Chem. 272: 28438–28446.
  • Lam, Y. A., W. Xu, G. N. DeMartino, and R. E. Cohen 1997. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385: 737–740.
  • Larsen, C., and S. Sadis. Personal communication.
  • Larsen, C. N., and D. Finley 1997. Protein translocation channels in the proteasome and other proteases. Cell 91: 431–434.
  • Lee, J. W., H. S. Choi, J. Gyuris, R. Brent, and D. D. Moore 1995. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol. Endocrinol. 9: 243–254.
  • Lenkinski, R. E., D. M. Chen, J. D. Glickson, and G. Goldstein 1977. Nuclear magnetic resonance studies of the denaturation of ubiquitin. Biochim. Biophys. Acta 494: 126–130.
  • Levin, D. Personal communication.
  • Longtine, M. S., D. J. DeMarini, M. L. Valencik, O. S. Al-Awar, H. Fares, C. De Virgilio, and J. R. Pringle 1996. The septins: roles in cytokinesis and other processes. Curr. Opin. Cell Biol. 8: 106–119.
  • Löwe, J., D. Stock, B. Jap, P. Zwickl, W. Baumeister, and R. Huber 1995. Crystal structure of the 20S proteasome from the archeon T. acidophilum at 3.4 Å resolution. Science 268: 533–539.
  • Lupas, A., and W. Baumeister 1997. A repetitive sequence in subunits of the 26S proteasome and 20S cyclosome (APC). Trends Biochem. Sci. 22: 195–196.
  • Lupas, A., J. M. Flanagan, T. Tamura, and W. Baumeister 1997. Self compartmentalizing proteases. Trends Biochem. Sci. 22: 399–404.
  • Lupas, A., M. van Dyke, and J. Stock 1991. Predicted coiled-coils from protein sequences. Science 252: 1162–1164.
  • Ma, C. P., C. A. Slaughter, and G. N. DeMartino 1992. Identification, purification, and characterization of a protein activator (PA28) of the 20S proteasome. J. Biol. Chem. 267: 10515–10523.
  • Ma, C. P., J. H. Vu, R. J. Proske, C. A. Slaughter, and G. N. DeMartino 1994. Identification, purification, and characterization of a high molecular weight ATP-dependent activator (PA700) of the 26S proteasome. J. Biol. Chem. 269: 3539–3547.
  • McCusker, J. H., and J. E. Haber 1988. Cycloheximide-resistant temperature-sensitive lethal mutations of S. cerevisiae. Genetics 119: 303–315.
  • McDonald, H. B., and B. Byers 1997. A proteasome cap subunit required for spindle pole body duplication in yeast. J. Cell Biol. 137: 539–553.
  • Mian, I. S. 1993. Sequence similarities between cell regulation factors, heat shock proteins and RNA helicases. Trends Biochem. Sci. 18: 125–127.
  • Nelbrock, P., P. J. Dillon, A. Perkins, and C. R. Rosen 1990. A cDNA for a protein that interacts with the human immunodeficiency virus Tat transactivator. Science 248: 1650–1654.
  • Nelson, M. K., T. Kurihara, and P. A. Silver 1993. Extragenic suppressors of mutations in the cytoplasmic C terminus of SEC63 define five genes in Saccharomyces cerevisiae. Genetics 134: 159–173.
  • Ohana, B., P. A. Moore, S. M. Ruben, C. D. Southgate, M. R. Green, and C. A. Rosen 1993. The type 1 human immunodeficiency virus Tat binding protein is a transcription activator belonging to an additional family of evolutionarily conserved genes. Proc. Natl. Acad. Sci. USA 90: 138–142.
  • Palombella, V. J., O. J. Rando, A. L. Goldberg, and T. Maniatis 1994. The ubiquitin proteasome pathway is required for processing the NF-κB1 precursor protein and activation of NF-κB. Cell 78: 773–785.
  • Peters, J. M., W. W. Franke, and J. A. Kleinschmidt 1994. Distinct 19S and 20S subcomplexes of the proteasome and their distribution in the nucleus and the cytoplasm. J. Biol. Chem. 269: 7709–7718.
  • Rechsteiner, M., L. Hoffman, and W. Dubiel 1993. The multicatalytic and 26S proteases. J. Biol. Chem. 268: 6065–6068.
  • Reits, E. A. J., A. M. Benham, J. Neefjes, and J. Trowsdale 1997. Dynamics of proteasome distribution in living cells. EMBO J. 16: 6087–6094.
  • Richmond, C., C. Gorbea, and M. Rechsteiner 1997. Specific interactions between ATPase subunits of the 26S proteasome. J. Biol. Chem. 272: 13403–13411.
  • Rinaldi, T., M. Bolotin-Fukuhara, and L. Frontali 1995. A Saccharomyces cerevisiae gene essential for viability has been conserved in evolution. Gene 160: 135–136.
  • Rose, M. D., F. Winston, and P. Hieter 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Rosenfeld, J., J. Capdevielle, J. C. Guillemont, and P. Ferrara 1992. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional electrophoresis. Anal. Biochem. 203: 173–179.
  • Rubin, D. M., O. Coux, I. Wefes, C. Hengartner, R. A. Young, A. L. Goldberg, and D. Finley 1996. Identification of the gal4 suppressor Sug1 as a subunit of the yeast 26S proteasome. Nature 379: 655–657.
  • Rubin, D. M., and D. Finley 1995. The proteasome: a protein degrading organelle? Curr. Biol. 5: 854–858.
  • Russell, S. J., U. G. Sathyanarayana, and S. A. Johnston 1996. Isolation and characterization of SUG2: a novel ATPase family component of the yeast 26S proteasome. J. Biol. Chem. 271: 32810–32817.
  • Saito, A., T. K. Watanabe, Y. Shimada, T. Fujiwara, C. A. Slaughter, G. N. DeMartino, N. Tanahashi, and K. Tanaka 1997. cDNA cloning and functional analysis of p44.5 and p55, two regulatory subunits of the proteasome. Gene 203: 241–250.
  • Sawada, H., T. Akaishi, M. Katsu, and H. Yokosawa 1997. Difference between PA700-like proteasome activator complex and the regulatory complex dissociated from the 26S proteasome implies the involvement of modulating factors in the 26S proteasome assembly. FEBS Lett. 412: 521–525.
  • Scheffner, M., J. Huibregste, R. D. Vierstra, and P. M. Howley 1993. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495–500.
  • Schnall, R., G. Mannhaupt, R. Stuka, R. Tauer, S. Ehnle, C. Schwarzlose, I. Vetter, and H. Feldmann 1994. Identification of a set of yeast genes coding for a novel family of putative ATPases with high similarity to constituents of the 26S protease complex. Yeast 10: 1141–1155.
  • Schneider, B. L., W. Seufert, B. Steiner, Q. H. Yang, and A. B. Futcher 1995. Use of polymerase chain reaction epitope tagging for protein tagging in S. cerevisiae. Yeast 11: 1265–1274.
  • Seeger, M., C. Gordon, K. Ferrell, and W. Dubiel 1996. Characteristics of 26S proteases from fission yeast mutants which arrest in mitosis. J. Mol. Biol. 263: 423–431.
  • Shibuya, H., K. Irie, J. Ninomiya-Tsuji, M. Goebl, T. Taniguchi, and K. Matsumoto 1992. New human gene encoding a positive modulator of HIV Tat-mediated transactivation. Nature 357: 700–702.
  • Shimanuki, M., Y. Saka, M. Yanagida, and T. Toda 1995. A novel essential fission yeast gene pad1(+) positively regulates pap1(+)-dependent transcription and is implicated in the maintenance of chromosome structure. J. Cell Sci. 108: 569–579.
  • Song, H. Y., J. D. Dunbar, Y. X. Zhang, D. Guo, and D. B. Donner 1995. Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J. Biol. Chem. 270: 3574–3581.
  • Spataro, V., T. Toda, R. Craig, M. Seeger, W. Dubiel, A. L. Harris, and C. Norbury 1997. Resistance to diverse drugs and UV light conferred by overexpression of a novel 26S proteasome subunit. J. Biol. Chem. 272: 30470–30475.
  • Sun, D., J. C. Swaffield, S. A. Johnston, C. E. Milligan, R. T. Zoeller, and L. M. Schwartz 1997. Identification of a phylogenetically conserved Sug1 CAD member that is differentially expressed in the mouse nervous system. J. Neurobiol. 33: 877–890.
  • Suzuki, C. K., M. Rep, J. M. van Dijl, K. Suda, L. A. Grivell, and G. Schatz 1997. ATP dependent proteases that also chaperone protein biogenesis. Trends Biochem. Sci. 22: 118–123.
  • Swaffield, J. C., J. F. Bromberg, and S. A. Johnston 1992. Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature 357: 700–702.
  • Takayanagi, K., S. Dawson, S. E. Reynolds, and R. J. Mayer 1996. Specific developmental changes in the regulatory subunits of the 26S proteasome in intersegmental muscles preceding eclosion in Manduca sexta. Biochem. Biophys. Res. Commun. 228: 517–523.
  • Talmadge, K. L., J. Kaufman, and W. Gilbert 1980. Bacteria mature preproinsulin to insulin. Proc. Natl. Acad. Sci. USA 77: 3988–3992.
  • Toh-e, A., and K. Tanaka. Personal communication.
  • Tsurumi, C., G. N. DeMartino, C. A. Slaughter, N. Shimbara, and K. Tanaka 1995. cDNA cloning of p40, a regulatory subunit of the human 26S proteasome, and a homolog of the Mov-34 gene product. Biochem. Biophys. Res. Commun. 210: 600–608.
  • Tsurumi, C., Y. Shimizu, M. Seki, S. Kato, G. N. DeMartino, C. A. Slaughter, M. Fujimuro, H. Yokosawa, M. Yamasaki, K. B. Hendil, A. Toh-e, and N. Tanahashi 1996. cDNA cloning and functional analysis of the p97 subunit of the 26S proteasome, a polypeptide identical to the type-1 tumor necrosis-factor-receptor-associated protein 2/55.11. Eur. J. Biochem. 239: 912–921.
  • Udvardy, A. 1993. Purification and characterisation of a multiprotein component of the Drosophila 26S proteolytic complex. J. Biol. Chem. 268: 9055–9062.
  • Ugai, S. I., T. Tamura, N. Tanahashi, S. Takai, N. Komi, C. H. Chung, K. Tanaka, and A. Ichihara 1993. Purification and characterisation of the 26S proteasome complex catalysing ATP dependent breakdown of ubiquitin ligated proteins from rat liver. J. Biochem. 113: 754–768.
  • van Nocker, S., Q. Deveraux, M. Rechsteiner, and R. D. Vierstra 1996. Arabidopsis MBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome. Proc. Natl. Acad. Sci. USA 93: 856–860.
  • van Nocker, S., S. Sadis, D. M. Rubin, M. H. Glickman, H. Fu, O. Coux, I. Wefes, D. Finley, and R. D. Vierstra 1996. The multiubiquitin chain binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell. Biol. 11: 6020–6028.
  • Walker, J. E., M. Sarasate, M. J. Runswick, and N. J. Gay 1982. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1: 945–951.
  • Ward, C. L., S. Omura, and R. R. Kopito 1995. Degradation of CFTR by the ubiquitin proteasome pathway. Cell 83: 121–127.
  • Wessel, D., and U. I. Flugge 1984. A method for the quantitative recovery of protein in a dilute solution in the presence of detergents and lipids. Anal. Biochem. 138: 141–143.
  • Wilkinson, C. R. M., M. Wallace, M. Seeger, W. Dubiel, and C. Gordon 1997. Mts4, a non-ATPase subunit of the 26S protease in fission yeast, is essential for mitosis and interacts directly with the ATPase subunit Mts2. J. Biol. Chem. 272: 25768–25777.
  • Wilkinson, K. D., V. L. Tashayev, L. B. O’Connor, C. N. Larsen, E. Kasperel, and C. M. Pickart 1995. Metabolism of the polyubiquitin degradation signal: structure, mechanism, and role of isopeptidase T. Biochemistry 34: 14535–14546.
  • Yokota, K., S. Kagawa, Y. Shimizu, H. Akioka, C. Tsurumi, C. Noda, M. Fujimuro, H. Yokosawa, T. Fujiwara, E. Takahashi, M. Ohba, M. Yamasaki, G. N. DeMartino, C. A. Slaughter, A. Toh-e, and K. Tanaka 1996. cDNA cloning of p112, the largest regulatory subunit of the human 26S proteasome, and functional analysis of its yeast homologue, Sen3p. Mol. Biol. Cell 7: 853–870.
  • Young, P., Q. Deveraux, R. E. Beal, C. M. Pickart, and M. Rechsteiner 1998. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J. Biol. Chem. 273: 5461–5467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.