22
Views
26
CrossRef citations to date
0
Altmetric
Gene Expression

A Chimeric Subunit of Yeast Transcription Factor IIIC Forms a Subcomplex with τ95

, , , , , , & show all
Pages 3191-3200 | Received 20 Jan 1998, Accepted 05 Mar 1998, Published online: 28 Mar 2023

REFERENCES

  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.
  • Arrebola, R., N. Manaud, S. Rozenfeld, M. C. Marsolier, O. Lefebvre, C. Carles, P. Thuriaux, C. Conesa, and A. Sentenac 1998. τ91, an essential subunit of yeast transcription factor IIIC, cooperates with τ138 in DNA binding. Mol. Cell. Biol. 18: 1–9.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl 1994. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y.
  • Baker, R. E., and B. D. Hall 1984. Structural features of yeast tRNA genes which affect transcription factor binding. EMBO J. 3: 2793–2800.
  • Bartholomew, B., G. A. Kassavetis, B. R. Braun, and E. P. Geiduschek 1990. The subunit structure of Saccharomyces cerevisiae transcription factor IIIC probed with a novel photocrosslinking reagent. EMBO J. 9: 2197–2205.
  • Bartholomew, B., G. A. Kassavetis, and E. P. Geiduschek 1991. Two components of Saccharomyces cerevisiae transcription factor IIIB (TFIIIB) are stereospecifically located upstream of a tRNA gene and interact with the second-largest subunit of TFIIIC. Mol. Cell. Biol. 11: 5181–5189.
  • Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and C. Cullin 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21: 3329–3330.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
  • Braun, B. R., B. Bartholomew, G. A. Kassavetis, and E. P. Geiduschek 1992. Topography of transcription factor complexes on the Saccharomyces cerevisiae 5 S RNA gene. J. Mol. Biol. 228: 1063–1077.
  • Burnol, A.-F., F. Margottin, J. Huet, G. Almouzni, M.-N. Prioleau, M. Méchali, and A. Sentenac 1993. TFIIIC relieves repression of U6 snRNA transcription by chromatin. Nature 362: 475–477.
  • Burnol, A. F., F. Margottin, P. Schultz, M. C. Marsolier, P. Oudet, and A. Sentenac 1993. Basal promoter and enhancer elements of yeast U6 snRNA gene. J. Mol. Biol. 233: 644–658.
  • Chaussivert, N., C. Conesa, S. Shaaban, and A. Sentenac 1995. Complex interactions between yeast TFIIIB and TFIIIC. J. Biol. Chem. 270: 15353–15358.
  • Conesa, C. Unpublished results.
  • Conesa, C., R. N. Swanson, P. Schultz, P. Oudet, and A. Sentenac 1993. On the subunit composition, stoichiometry, and phosphorylation of the yeast transcription factor TFIIIC/τ. J. Biol. Chem. 268: 18047–18052.
  • Don, R. H., P. T. Cox, B. J. Wainwright, K. Baker, and J. S. Mattick 1991. ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19: 4008.
  • Edwards, D. R., C. L. Parfett, and D. T. Denhardt 1985. Transcriptional regulation of two serum-induced RNAs in mouse fibroblasts: equivalence of one species to B2 repetitive elements. Mol. Cell. Biol. 5: 3280–3288.
  • Gabrielsen, O. S., N. Marzouki, A. Ruet, A. Sentenac, and P. Fromageot 1989. Two polypeptide chains in yeast transcription factor τ interact with DNA. J. Biol. Chem. 264: 7505–7511.
  • Gabrielsen, O. S., and T. B. Oyen 1987. The requirement for the A block promoter in tRNA gene transcription in vitro depends on the ionic environment. Nucleic Acids Res. 15: 5699–5713.
  • Geiduschek, E. P., and G. A. Kassavetis RNA polymerase III transcription complexes (Transcriptional regulation In: McKnight, S. L., and K. R. Yamamoto11992247–280Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Gietz, R. D., and A. Sugino 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527–534.
  • Harlow, E., and D. Lane 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Harper, J. W., G. R. Adami, N. Wei, K. Keyomarsi, and S. J. Elledge 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816.
  • Heinemeyer, W., A. Gruhler, V. Mohrle, Y. Mahe, and D. H. Wolf 1993. PRE2, highly homologous to the human major histocompatibility complex-linked RING10 gene, codes for a yeast proteasome subunit necessary for chymotryptic activity and degradation of ubiquinated proteins. J. Biol. Chem. 268: 5115–5120.
  • Hoeffler, W. K., and R. G. Roeder 1985. Enhancement of RNA polymerase III transcription by the E1A gene product of adenovirus. Cell 41: 955–963.
  • Huet, J., C. Conesa, N. Manaud, N. Chaussivert, and A. Sentenac 1994. Interactions between yeast TFIIIB components. Nucleic Acids Res. 22: 3433–3439.
  • Huet, J., N. Manaud, G. Dieci, G. Peyroche, C. Conesa, O. Lefebvre, A. Ruet, M. Riva, and A. Sentenac 1996. RNA polymerase III and class III transcription factors from Saccharomyces cerevisiae. Methods Enzymol. 273: 249–267.
  • Joazeiro, C. A. P., G. A. Kassavetis, and E. P. Geiduschek 1996. Alternative outcomes in assembly of promoter complexes: the roles of TBP and a flexible linker in placing TFIIIB on tRNA genes. Genes Dev. 10: 725–739.
  • Kassavetis, G. A., C. Bardeleben, B. Bartholomew, B. R. Braun, C. A. P. Joazeiro, M. Pisano, and E. P. Geiduschek 1994. Transcription by RNA polymerase III Transcription: mechanisms and regulation. In: Conaway, R. C., and J. W. Conaway107–126Raven Press, Ltd., New York, N.Y.
  • Kassavetis, G. A., B. R. Braun, L. H. Nguyen, and E. P. Geiduschek 1990. S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 60: 235–245.
  • Kassavetis, G. A., C. A. P. Joazeiro, M. Pisano, E. P. Geiduschek, T. Colbert, S. Hahn, and J. A. Blanco 1992. The role of the TATA-binding protein in the assembly and function of the multisubunit yeast RNA polymerase III transcription factor, TFIIIB. Cell 71: 1055–1064.
  • Kassavetis, G. A., S. T. Nguyen, R. Kobayashi, A. Kumar, E. P. Geiduschek, and M. Pisano 1995. Cloning, expression, and function of TFC5, the gene encoding the B" component of the Saccharomyces cerevisiae RNA polymerase III transcription factor TFIIIB. Proc. Natl. Acad. Sci. USA 92: 9786–9790.
  • Kassavetis, G. A., D. L. Riggs, R. Negri, L. H. Nguyen, and E. P. Geiduschek 1989. Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes. Mol. Cell. Biol. 9: 2551–2566.
  • Khoo, B., B. Brophy, and S. P. Jackson 1994. Conserved functional domains of the RNA polymerase III general transcription factor BRF. Genes Dev. 8: 2879–2890.
  • Kovelman, R., and R. G. Roeder 1992. Purification and characterization of two forms of human transcription factor IIIC. J. Biol. Chem. 267: 24446–24456.
  • Lefebvre, O., C. Carles, C. Conesa, R. N. Swanson, F. Bouet, M. Riva, and A. Sentenac 1992. TFC3: gene encoding the B-block binding subunit of the yeast transcription factor TFIIIC. Proc. Natl. Acad. Sci. USA 89: 10512–10516.
  • Lefebvre, O., J. Rüth, and A. Sentenac 1994. A mutation in the largest subunit of yeast TFIIIC affects tRNA and 5 S RNA synthesis. Identification of two classes of suppressors. J. Biol. Chem. 269: 23374–23381.
  • Marck, C., O. Lefebvre, C. Carles, M. Riva, N. Chaussivert, A. Ruet, and A. Sentenac 1993. The TFIIIB-assembling subunit of yeast transcription factor TFIIIC has both tetratricopeptide repeat and basic helix-loop-helix motifs. Proc. Natl. Acad. Sci. USA 90: 4027–4031.
  • Marzouki, N., S. Camier, A. Ruet, A. Moenne, and A. Sentenac 1986. Selective proteolysis defines two DNA binding domains in yeast transcription factor τ. Nature 323: 176–178.
  • Oettel, S., F. Härtel, I. Kober, S. Iben, and K. H. Seifart 1997. Human transcription factors IIIC2, IIIC1 and a novel component IIIC0 fulfill different aspects of DNA binding to various pol III genes. Nucleic Acids Res. 25: 2440–2447.
  • Ossipow, V., J. P. Tassan, E. A. Nigg, and U. Schibler 1995. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83: 137–146.
  • O’Toole, G. A., J. R. Trzebiatowski, and J. C. Escalante-Semerena 1994. The cobC gene of Salmonella typhimurium codes for a novel phosphatase involved in the assembly of the nucleotide loop of cobalamin. J. Biol. Chem. 269: 26503–26511.
  • Ottonello, S., D. H. Rivier, G. M. Doolittle, L. S. Young, and K. U. Sprague 1987. The properties of a new polymerase III transcription factor reveal that transcription complexes can assemble by more than one pathway. EMBO J. 6: 1921–1927.
  • Papavassiliou, A. G., and D. Bohmann 1992. Optimization of the signal-to-noise ratio in south-western assays by using lipid-free BSA as blocking reagent. Nucleic Acids Res. 20: 4365–4366.
  • Parsons, M. C., and P. A. Weil 1990. Purification and characterization of Saccharomyces cerevisiae transcription factor TFIIIC. Polypeptide composition defined with polyclonal antibodies. J. Biol. Chem. 265: 5095–5103.
  • Parsons, M. C., and P. A. Weil 1992. Cloning of TFC1, the Saccharomyces cerevisiae gene encoding the 95-kDa subunit of transcription factor TFIIIC. J. Biol. Chem. 267: 2894–2901.
  • Rüth, J., C. Conesa, G. Dieci, O. Lefebvre, A. Düsterhöft, S. Ottonello, and A. Sentenac 1996. A suppressor of mutations in the class III transcription system encodes a component of yeast TFIIIB. EMBO J. 15: 1941–1949.
  • Schultz, P., N. Marzouki, C. Marck, A. Ruet, P. Oudet, and A. Sentenac 1989. The two DNA-binding domains of yeast transcription factor τ as observed by scanning transmission electron microscopy. EMBO J. 8: 3815–3824.
  • Sethy, I., R. D. Moir, M. Librizzi, and I. M. Willis 1995. In vitro evidence for growth regulation of tRNA gene transcription in yeast. A role for transcription factor (TF) IIIB70 and TFIIIC. J. Biol. Chem. 270: 28463–28470.
  • Swanson, R. N., C. Conesa, O. Lefebvre, C. Carles, A. Ruet, E. Quemeneur, J. Gagnon, and A. Sentenac 1991. Isolation of TFC1, a gene encoding one of two DNA-binding subunits of yeast transcription factor τ (TFIIIC). Proc. Natl. Acad. Sci. USA 88: 4887–4891.
  • Tower, J., and B. Sollner-Webb 1988. Polymerase III transcription factor B activity is reduced in extracts of growth-restricted cells. Mol. Cell. Biol. 8: 1001–1005.
  • Wang, Z., and R. G. Roeder 1996. Transcription factor IIIC1 (TFIIIC1) acts through a downstream region to stabilize TFIIIC2 binding to RNA polymerase III promoters. Mol. Cell. Biol. 16: 6841–6850.
  • Werner, M., N. Chaussivert, I. M. Willis, and A. Sentenac 1993. Interaction between a complex of RNA polymerase III subunits and the 70-kDa component of transcription factor IIIB. J. Biol. Chem. 268: 20721–20724.
  • Willis, I. M. 1993. RNA polymerase III. Genes, factors and transcriptional specificity. Eur. J. Biochem. 212: 1–11.
  • Wilson, I. A., H. L. Niman, R. A. Houghten, A. R. Cherenson, M. L. Connolly, and R. A. Lerner 1984. The structure of an antigenic determinant in a protein. Cell 37: 767–778.
  • Wolfe, K. H., and D. C. Shields 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713.
  • Yoshinaga, S. K., P. A. Boulanger, and A. J. Berk 1987. Resolution of human transcription factor TFIIIC into two functional components. Proc. Natl. Acad. Sci. USA 84: 3585–3589.
  • Yoshinaga, S. K., N. D. L’Etoile, and A. J. Berk 1989. Purification and characterization of transcription factor IIIC2. J. Biol. Chem. 264: 10726–10731.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.