30
Views
100
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Cyclin Partners Determine Pho85 Protein Kinase Substrate Specificity In Vitro and In Vivo: Control of Glycogen Biosynthesis by Pcl8 and Pcl10

, , , , , & show all
Pages 3289-3299 | Received 07 Jan 1998, Accepted 18 Mar 1998, Published online: 28 Mar 2023

REFERENCES

  • Aerne, B. L., A. L. Johnson, J. H. Toyn, and L. H. Johnston 1998. Swi5 controls a novel wave of cyclin synthesis in late mitosis. Mol. Biol. Cell 9: 945–956.
  • Bai, C., and S. Elledge 1997. Gene identification using the yeast two-hybrid system. Methods Enzymol. 283: 141–156.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
  • Cannon, J. F., J. R. Pringle, A. Fiechter, and M. Khalil 1994. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics 136: 485–503.
  • Cheng, C., D. Huang, and P. J. Roach 1997. Yeast PIG genes: PIG1 encodes a putative type 1 phosphatase subunit that interacts with the yeast glycogen synthase Gsy2p. Yeast 13: 1–8.
  • Cheng, C., J. Mu, I. Farkas, D. Huang, M. G. Goebl, and P. J. Roach 1995. Requirement of the self-glucosylating initiator proteins Glg1p and Glg2p for glycogen accumulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 15: 6632–6640.
  • Cheng, C., and P. J. Roach. 1998. Unpublished results.
  • Chien, C. T., P. L. Bartel, R. Sternglanz, and S. Fields 1991. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88: 9578–9582.
  • Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and P. Hieter 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110: 119–122.
  • Coche, T., D. Prozzi, M. Legrain, F. Hilger, and J. Vandenhaute 1990. Nucleotide sequence of the PHO81 gene involved in the regulation of the repressible acid phosphatase gene in Saccharomyces cerevisiae. Nucleic Acids Res. 18: 2176.
  • Creasy, C. L., S. L. Madden, and L. W. Bergman 1993. Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae. Nucleic Acids Res. 21: 1975–1982.
  • Durfee, T., K. Becherer, P. L. Chen, S. H. Yeh, Y. Yang, A. E. Kilburn, W. H. Lee, and S. J. Elledge 1993. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7: 555–569.
  • Dynlacht, B. D., O. Flores, J. A. Lees, and E. Harlow 1994. Differential regulation of E2F transactivation by cyclin/cdk2 complexes. Genes Dev. 8: 1772–1786.
  • Espinoza, F. H., J. Ogas, I. Herskowitz, and D. O. Morgan 1994. Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85. Science 266: 1388–1391.
  • Farkas, I., T. A. Hardy, A. A. DePaoli-Roach, and P. J. Roach 1990. Isolation of the GSY1 gene encoding yeast glycogen synthase and evidence for the existence of a second gene. J. Biol. Chem. 265: 20879–20886.
  • Farkas, I., T. A. Hardy, M. G. Goebl, and P. J. Roach 1991. Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled. J. Biol. Chem. 266: 15602–15607.
  • Feng, Z. H., S. E. Wilson, Z. Y. Peng, K. K. Schlender, E. M. Reimann, and R. J. Trumbly 1991. The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J. Biol. Chem. 266: 23796–23801.
  • François, J. M., J. Blazquez, J. Arino, and C. Gancedo 1997. Storage carbohydrates in the yeast Saccharomyces cerevisiae Yeast sugar metabolism: biochemistry, genetics, biotechnology. In: Zimmermann, F. K., and K.-D. Entian285–311Technomic, Lancaster, Pa.
  • Francois, J. M., S. Thompson-Jaeger, J. Skroch, U. Zellenka, W. Spevak, and K. Tatchell 1992. GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae. EMBO J. 11: 87–96.
  • Gibbs, E., Z. Q. Pan, H. Niu, and J. Hurwitz 1996. Studies on the in vitro phosphorylation of HSSB-p34 and -p107 by cyclin-dependent kinases. Cyclin-substrate interactions dictate the efficiency of phosphorylation. J. Biol. Chem. 271: 22847–22854.
  • Gilliquet, V., and G. Berben 1993. Positive and negative regulators of the Saccharomyces cerevisiae ‘PHO system’ participate in several cell functions. FEMS Microbiol. Lett. 108: 333–339.
  • Guthrie, C., and R. Fink 1991. Methods in enzymology, 194. Guide to yeast genetics and molecular biology. Academic Press, New York, N.Y.
  • Hardy, T. A., D. Huang, and P. J. Roach 1994. Interactions between cAMP-dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae. J. Biol. Chem. 269: 27907–27913.
  • Hardy, T. A., and P. J. Roach 1993. Control of yeast glycogen synthase-2 by COOH-terminal phosphorylation. J. Biol. Chem. 268: 23799–23805.
  • Harper, J. W., G. R. Adami, N. Wei, K. Keyomarsi, and S. J. Elledge 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816.
  • Higashi, H., I. Suzuki-Takahashi, Y. Taya, K. Segawa, S. Nishimura, and M. Kitagawa 1995. Differences in substrate specificity between Cdk2-cyclin A and Cdk2-cyclin E in vitro. Biochem. Biophys. Res. Commun. 216: 520–525.
  • Higuchi, R. 1990. Recombinant PCR PCR protocols: a guide to methods and applications. In: Innis, M. A., D. H. Gelfand, J. J. Sninsky, and T. J. White177–83Academic Press, San Diego, Calif.
  • Hirst, K., F. Fisher, P. C. McAndrew, and C. R. Goding 1994. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal. EMBO J. 13: 5410–5420.
  • Hoffmann, I., P. R. Clarke, M. J. Marcote, E. Karsenti, and G. Draetta 1993. Phosphorylation and activation of human cdc25-C by cdc2—cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12: 53–63.
  • Holmes, J. K., and M. J. Solomon 1996. A predictive scale for evaluating cyclin-dependent kinase substrates. A comparison of p34cdc2 and p33cdk2. J. Biol. Chem. 271: 25240–25246.
  • Horton, L. E., and D. J. Templeton 1997. The cyclin box and C-terminus of cyclins A and E specify CDK activation and substrate specificity. Oncogene 14: 491–498.
  • Huang, D., K. T. Chun, M. G. Goebl, and P. J. Roach 1996. Genetic interactions between REG1/HEX2 and GLC7, the gene encoding the protein phosphatase type 1 catalytic subunit in Saccharomyces cerevisiae. Genetics 143: 119–127.
  • Huang, D., I. Farkas, and P. J. Roach 1996. Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 4357–4365.
  • Huang, D., V. Measday, P. J. Roach, and B. Andrews. 1997. Unpublished results.
  • Huang, D., and P. J. Roach. 1997. Unpublished results.
  • Huang, D., W. A. Wilson, and P. J. Roach 1997. Glucose-6-P control of glycogen synthase phosphorylation in yeast. J. Biol. Chem. 272: 22495–22501.
  • Johnston, M., and M. Carlson Regulation of carbon and phosphate utilization The molecular biology of the yeast Saccharomyces. Gene expression In: Jones, E. W., J. R. Pringle, and J. R. Broach21992193–281Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Kaffman, A., I. Herskowitz, R. Tjian, and E. K. O’Shea 1994. Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80–PHO85. Science 263: 1153–1156.
  • Kellogg, D. R., A. Kikuchi, T. Fujii-Nakata, C. W. Turck, and A. W. Murray 1995. Members of the NAP/SET family of proteins interact specifically with B-type cyclins. J. Cell Biol. 130: 661–673.
  • Kennelly, P. J., and E. G. Krebs 1991. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol. Chem. 266: 15555–15558.
  • Kitagawa, M., H. Higashi, H. K. Jung, I. Suzuki-Takahashi, M. Ikeda, K. Tamai, J. Kato, K. Segawa, E. Yoshida, S. Nishimura, and Y. Taya 1996. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J. 15: 7060–7069.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
  • Lenburg, M. E., and E. K. O’Shea 1996. Signaling phosphate starvation. Trends Biochem. Sci. 21: 383–387.
  • Madden, S. L., C. L. Creasy, V. Srinivas, W. Fawcett, and L. W. Bergman 1988. Structure and expression of the PHO80 gene of Saccharomyces cerevisiae. Nucleic Acids Res. 16: 2625–2637.
  • Measday, V., and B. Andrews 1998. The cyclin family of budding yeast: abundant use of a good idea. Trends Genet. 14: 66–72.
  • Measday, V., L. Moore, J. Ogas, M. Tyers, and B. Andrews 1994. The PCL2 (ORFD)-PHO85 cyclin-dependent kinase complex: a cell cycle regulator in yeast. Science 266: 1391–1395.
  • Measday, V., L. Moore, R. Retnakaran, J. Lee, M. Donoviel, A. M. Neiman, and B. Andrews 1997. A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase. Mol. Cell. Biol. 17: 1212–1223.
  • Moore, L., and B. Andrews 1992. Mutational analysis of a DNA sequence involved in linking gene expression to the cell cycle. Biochem. Cell Biol. 70: 1073–1080.
  • Morgan, D. O. 1996. The dynamics of cyclin dependent kinase structure. Curr. Opin. Cell Biol. 8: 767–772.
  • Morgan, D. O. 1995. Principles of CDK regulation. Nature 374: 131–134.
  • Nasmyth, K. 1993. Control of the yeast cell cycle by the Cdc28 protein kinase. Curr. Opin. Cell Biol. 5: 166–179.
  • Nigg, E. A. 1995. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 17: 471–480.
  • O’Neill, E. M., A. Kaffman, E. R. Jolly, and E. K. O’Shea 1996. Regulation of PHO4 nuclear localization by the PHO80-PHO85 cyclin-CDK complex. Science 271: 209–212.
  • Oshima, Y. 1982. Regulatory circuits for gene expression: the metabolism of galactose and phosphate The molecular biology of the yeast Saccharomyces cerevisiae: metabolism and gene expression. In: Strathern, J. N., E. W. Jones, and J. R. Broach159–180Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Pearson, R. B., and B. E. Kemp 1991. Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol. 200: 62–81.
  • Peeper, D. S., L. L. Parker, M. E. Ewen, M. Toebes, F. L. Hall, M. Xu, A. Zantema, A. J. van der Eb, and H. Piwnica-Worms 1993. A- and B-type cyclins differentially modulate substrate specificity of cyclin-cdk complexes. EMBO J. 12: 1947–1954.
  • Peng, Z. Y., R. J. Trumbly, and E. M. Reimann 1990. Purification and characterization of glycogen synthase from a glycogen-deficient strain of Saccharomyces cerevisiae. J. Biol. Chem. 265: 13871–13877.
  • Pinna, L. A., and M. Ruzzene 1996. How do protein kinases recognize their substrates? Biochim. Biophys. Acta 1314: 191–225.
  • Platt, T., B. Muller-Hill, and J. H. Miller 1972. Assay of β-galactosidase Experiments in molecular genetics. In: Miller, J. H.352–355Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Ronne, H. 1995. Glucose repression in fungi. Trends Genet. 11: 12–17.
  • Rowen, D. W., M. Meinke, and D. C. LaPorte 1992. GLC3 and GHA1 of Saccharomyces cerevisiae are allelic and encode the glycogen branching enzyme. Mol. Cell. Biol. 12: 22–29.
  • Russo, A. A., P. D. Jeffrey, A. K. Patten, J. Massague, and N. P. Pavletich 1996. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382: 325–331.
  • Schneider, K. R., R. L. Smith, and E. K. O’Shea 1994. Phosphate-regulated inactivation of the kinase PHO80-PHO85 by the CDK inhibitor PHO81. Science 266: 122–126.
  • Sikorski, R. S., and P. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Skurat, A. V., and P. J. Roach 1995. Regulation of glycogen biosynthesis Diabetes mellitus: a fundamental and clinical text. J. B. In: LeRoith, D., J. E. Olefsky, and S. Taylor213–222Lippincott Company, Philadelphia, Pa.
  • Songyang, Z., S. Blechner, N. Hoagland, M. F. Hoekstra, H. Piwnica-Worms, and L. C. Cantley 1994. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. 4: 973–982.
  • Songyang, Z., K. P. Lu, Y. T. Kwon, L.-H. Tsai, O. Filhol, C. Cochet, D. A. Brickey, T. R. Soderling, C. Bartleson, D. J. Graves, A. J. DeMaggio, M. F. Hoekstra, J. Blenis, T. Hunter, and L. C. Cantley 1996. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol. Cell. Biol. 16: 6486–6493.
  • Stuart, J. S., D. L. Frederick, C. M. Varner, and K. Tatchell 1994. The mutant type 1 protein phosphatase encoded by glc7-1 from Saccharomyces cerevisiae fails to interact productively with the GAC1-encoded regulatory subunit. Mol. Cell. Biol. 14: 896–905.
  • Tan, A. W. 1979. A simplified method for the preparation of pure UDP[14C]glucose. Biochim. Biophys. Acta 582: 543–547.
  • Taya, Y. 1997. RB kinases and RB-binding proteins: new points of view. Trends Biochem. Sci. 22: 14–17.
  • Tennyson, C., J. Lee, and B. Andrews. A role for the Pcl9-Pho85 cyclin-cdk complex at the M/G1 boundary in S. cerevisiae. Mol. Microbiol., in press.
  • Thomas, J. A., K. K. Schlender, and J. Larner 1968. A rapid filter paper assay for UDP glucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal. Biochem. 25: 486–499.
  • Thompson-Jaeger, S., J. Francois, J. P. Gaughran, and K. Tatchell 1991. Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway. Genetics 129: 697–706.
  • Thon, V. J., C. Vigneron-Lesens, T. Marianne-Pepin, J. Montreuil, A. Decq, C. Rachez, S. G. Ball, and J. F. Cannon 1992. Coordinate regulation of glycogen metabolism in the yeast Saccharomyces cerevisiae. Induction of glycogen branching enzyme. J. Biol. Chem. 267: 15224–15228.
  • Timblin, B. K., K. Tatchell, and L. W. Bergman 1996. Deletion of the gene encoding the cyclin-dependent protein kinase Pho85 alters glycogen metabolism in Saccharomyces cerevisiae. Genetics 143: 57–66.
  • Toh-e, A., K. Tanaka, Y. Uesono, and R. B. Wickner 1988. PHO85, a negative regulator of the PHO system, is a homolog of the protein kinase gene, CDC28, of Saccharomyces cerevisiae. Mol. Gen. Genet. 214: 162–164.
  • Torriani, A. 1960. Influence of organic phosphate on the formation of acid phosphatases by Escherichia coli. Biochim. Biophys. Acta 38: 460–469.
  • Tyers, M., G. Tokiwa, R. Nash, and B. Futcher 1992. The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J. 11: 1773–1784.
  • Uesono, Y., K. Tanaka, and A. Toh-e 1987. Negative regulators of the PHO system in Saccharomyces cerevisiae: isolation and structural characterization of PHO85. Nucleic Acids Res. 15: 10299–10309.
  • Uesono, Y., M. Tokai, K. Tanaka, and A. Toh-e 1992. Negative regulators of the PHO system of Saccharomyces cerevisiae: characterization of PHO80 and PHO85. Mol. Gen. Genet. 231: 426–432.
  • Zarkowska, T., and S. Mittnacht 1997. Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J. Biol. Chem. 272: 12738–12746.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.