35
Views
172
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Multiple Mechanisms Regulate Imprinting of the Mouse Distal Chromosome 7 Gene Cluster

, , , &
Pages 3466-3474 | Received 23 Jan 1998, Accepted 06 Mar 1998, Published online: 28 Mar 2023

REFERENCES

  • Auffray, C., and F. Rougeon 1980. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem. 107: 303–314.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl 1988. Current protocols in molecular biology 1 John Wiley & Sons, Inc., New York, N.Y.
  • Barlow, D. P. 1997. Competition—a common motif for the imprinting mechanism? EMBO J. 16: 6899–6905.
  • Bartolomei, M. S., and S. M. Tilghman 1997. Genomic imprinting in mammals. Annu. Rev. Genet. 31: 493–525.
  • Bartolomei, M. S., A. L. Webber, M. E. Brunkow, and S. M. Tilghman 1993. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7: 1663–1673.
  • Bartolomei, M. S., S. Zemel, and S. M. Tilghman 1991. Parental imprinting of the mouse H19 gene. Nature 351: 153–155.
  • Brown, K. W., A. J. Villar, W. Bickmore, J. Clayton-Smith, D. Catchpole, E. R. Maher, and W. Reik 1996. Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway. Hum. Mol. Genet. 5: 2027–2032.
  • Buiting, K., S. Saitoh, S. Gross, B. Dittrich, S. Schwartz, R. D. Nicholls, and B. Horsthemke 1995. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat. Genet. 9: 395–400.
  • Caspary, T., and S. M. Tilghman. Unpublished data.
  • Chung, W.-Y., L. Yuan, L. Feng, T. Hensle, and B. Tycko 1996. Chromosome 11p15.5 regional imprinting: comparative analysis of KIP2 and H19 in human tissues and Wilms’ tumors. Hum. Mol. Genet. 5: 1101–1108.
  • Cleary, M. A., and S. M. Tilghman. Unpublished data.
  • Dittrich, B., K. Buiting, B. Korn, S. Rickard, J. Buxton, S. Saitoh, R. D. Nicholls, A. Poustka, A. Winterpacht, B. Zabel, and B. Horsthemke 1996. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nat. Genet. 14: 163–170.
  • Edlund, T., M. D. Walker, P. J. Barr, and W. J. Rutter 1985. Cell-specific expression of the rat insulin gene: evidence for role of two distinct 5′ flanking elements. Science 230: 912–916.
  • Eggenschwiler, J., T. Ludwig, P. Fisher, P. A. Leighton, S. M. Tilghman, and A. Efstratiadis 1997. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes Dev. 11: 3128–3142.
  • Ferguson-Smith, A. C., H. Sasaki, B. M. Cattanach, and M. A. Surani 1993. Parental-origin-specific epigenetic modifications of the mouse H19 gene. Nature 362: 751–755.
  • Giddings, S. J., C. D. King, K. W. Harman, J. F. Flood, and L. R. Carnaghi 1994. Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nat. Genet. 6: 310–313.
  • Glenn, C. C., D. J. Driscoll, P. Yang, and R. D. Nicholls 1997. Genomic imprinting: potential function and mechanisms revealed by the Prader-Willi and Angelman syndromes. Mol. Hum. Reprod. 3: 321–332.
  • Guillemot, F., T. Caspary, S. M. Tilghman, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, D. J. Anderson, A. L. Joyner, J. Rossant, and A. Nagy 1995. Genomic imprinting of Mash-2, a mouse gene required for trophoblast development. Nat. Genet. 9: 235–241.
  • Guillemot, F., A. Nagy, A. Auerbach, J. Rossant, and A. L. Joyner 1994. Essential role of Mash-2 in extraembryonic development. Nature 371: 333–336.
  • Gunaratne, P. H., M. Nakao, D. H. Ledbetter, J. S. Sutcliffe, and A. C. Chinault 1995. Tissue-specific and allele-specific replication timing control in the imprinted human Prader-Willi syndrome region. Genes Dev. 9: 808–820.
  • Hatada, I., and T. Mukai 1995. Genomic imprinting of p57/KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nat. Genet. 11: 204–206.
  • Hoovers, J. M., L. M. Kalikin, L. A. Johnson, M. Alders, B. Redeker, D. J. Law, J. Bliek, M. Steenman, M. Benedict, and J. Wiegant 1995. Multiple genetic loci within 11p15 defined by Beckwith-Wiedemann syndrome rearrangement breakpoints and subchromosomal transferable fragments. Proc. Natl. Acad. Sci. USA 92: 12456–12460.
  • Hu, R.-J., M. P. Lee, L. A. Johnson, and A. P. Feinberg 1996. A novel human homologue of yeast nucleosome assembly protein, 65 kb centromeric to the p57KIP2 gene, is biallelically expressed in fetal and adult tissues. Hum. Mol. Genet. 5: 1743–1748.
  • Kay, G. F., G. D. Penny, D. Patel, A. Ashworth, N. Brockdorff, and S. Rastan 1993. Expression of Xist during mouse development suggests a role in the initiation of X chromosome inactivation. Cell 72: 171–182.
  • Kishino, T., M. Lalande, and J. Wagstaff 1997. UBE3A/E6-AP mutations cause Angelman syndrome. Nat. Genet. 15: 70–73.
  • Kitsberg, D., S. Selig, M. Brandeis, I. Simon, I. Keshet, D. J. Driscoll, R. D. Nicholls, and H. Cedar 1993. Allele-specific replication timing of imprinted gene regions. Nature 364: 459–463.
  • Knoll, J. H., S. D. Cheng, and M. Lalande 1994. Allele specificity of DNA replication timing in the Angelman/Prader-Willi syndrome imprinted chromosomal region. Nat. Genet. 6: 41–46.
  • Lalande, M. 1996. Parental imprinting and disease. Annu. Rev. Genet. 30: 173–195.
  • Lee, M. P., M. DeBaun, G. Randhawa, B. A. Reichard, S. J. Elledge, and A. P. Feinberg 1997. Low frequency of p57KIP2 mutation in Beckwith-Wiedemann syndrome. Am. J. Hum. Genet. 61: 304–309.
  • Lee, M. P., R. Hu, L. A. Johnson, and A. P. Feinberg 1997. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nat. Genet. 15: 181–185.
  • Leff, S. E., C. I. Brannan, M. L. Reed, T. Ozcelik, U. Francke, N. G. Copeland, and N. A. Jenkins 1992. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nat. Genet. 2: 259–264.
  • Leighton, P. A., R. S. Ingram, J. Eggenschwiler, A. Efstratiadis, and S. M. Tilghman 1995. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375: 34–39.
  • Leighton, P. A., J. R. Saam, R. S. Ingram, C. L. Stewart, and S. M. Tilghman 1995. An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 9: 2079–2089.
  • Li, E., C. Beard, and R. Jaenisch 1993. The role of DNA methylation in genomic imprinting. Nature 366: 362–365.
  • Li, E., T. H. Bestor, and R. Jaenisch 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926.
  • Lucassen, A. M., C. Julier, J. P. Beressi, C. Boitard, P. Froguel, M. Lathrop, and J. I. Bell 1993. Susceptibility to insulin dependent diabetes mellitus maps to a 4.1 kb segment of the DNA spanning the insulin gene and associated VNTR. Nat. Genet. 4: 305–310.
  • Maecker, H. T., and S. Levy 1997. Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J. Exp. Med. 185: 1505–1510.
  • Marahrens, Y., B. Panning, J. Dausman, W. Strauss, and R. Jaenisch 1997. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 11: 156–166.
  • Matsuura, T., J. S. Sutcliffe, P. Fang, R.-J. Galjaard, Y. Jiang, C. S. Benton, J. M. Rommens, and A. L. Beaudet 1997. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat. Genet. 15: 74–77.
  • O’Keefe, D., D. Dao, L. Zhao, R. Sanderson, D. Warburton, L. Weiss, K. Anyane-Yeboa, and B. Tycko 1997. Coding mutations in p57KIP2 are present in some cases of Beckwith-Wiedemann syndrome but are rare or absent in Wilms tumors. Am. J. Hum. Genet. 61: 295–303.
  • Paldi, A., G. Gyapay, and J. Jami 1995. Imprinted chromosomal regions of the human genome display sex-specific meiotic recombination frequencies. Curr. Biol. 5: 1030–1035.
  • Penny, G. D., G. F. Kay, S. A. Sheardown, S. Rastan, and N. Brockdroff 1996. Requirement for Xist in X chromosome inactivation. Nature 379: 131–137.
  • Qian, N., D. Frank, D. O’Keefe, D. Dao, L. Zhao, L. Yuan, Q. Wang, M. Keating, C. Walsh, and B. Tycko 1997. The IPL gene on chromosome 11p15.5 is imprinted in humans and mice and is similar to TDAG51, implicated in Fas expression and apoptosis. Hum. Mol. Genet. 6: 2021–2029.
  • Reid, L. H., C. Davies, P. R. Cooper, S. J. Crider-Miller, S. N. J. Sait, N. J. Nowak, G. Evans, E. J. Stanbridge, P. deJong, T. B. Shows, B. E. Weissman, and M. J. Higgins 1997. A 1-Mb physical map and PAC contig on the imprinted domain in 11p15.5 that contains TAPA1 and the BWSCR1/WT2 region. Genomics 43: 366–375.
  • Reik, W., and E. R. Maher 1997. Imprinting in clusters: lessons from Beckwith-Wiedemann syndrome. Trends Genet. 13: 330–334.
  • Ripoche, M.-A., C. Kress, F. Poirier, and L. Dandolo 1997. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev. 11: 1596–1604.
  • Saitoh, S., K. Buiting, P. K. Rogan, J. L. Buxton, D. J. Driscoll, J. Arnemann, R. Konig, S. Malcolm, B. Horsthemke, and R. D. Nicholls 1996. Minimal definition of the imprinting center and fixation of a chromosome 15q11-q13 epigenotype by imprinting mutations. Proc. Natl. Acad. Sci. USA 93: 7811–7815.
  • Shemer, R., Y. Birger, A. D. Riggs, and A. Razin 1997. Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern. Proc. Natl. Acad. Sci. USA 94: 10267–10272.
  • Smrzka, O. W., I. Fae, R. Stoger, R. Kurzbauer, G. F. Fischer, T. Henn, A. Weith, and D. P. Barlow 1995. Conservation of a maternal-specific methylation signal at the human IGF2R locus. Hum. Mol. Genet. 4: 1945–1952.
  • Sun, F.-L., W. Dean, G. Kelsey, N. D. Allen, and W. Reik 1997. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature 389: 809–815.
  • Sutcliffe, J. S., M. Nakao, S. Christian, K. H. Orstavik, N. Tommerup, D. H. Ledbetter, and A. L. Beaudet 1994. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat. Genet. 8: 52–58.
  • Takagi, N., and M. Sasaki 1975. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256: 640–642.
  • Tremblay, K. D., J. R. Saam, R. S. Ingram, S. M. Tilghman, and M. S. Bartolomei 1995. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat. Genet. 9: 407–413.
  • Tsang, P., F. Gilles, L. Yuan, Y. H. Kuo, F. Lupu, G. Samara, J. Moosikasuwan, A. Goye, A. D. Zelenetz, L. Selleri, and B. Tycko 1995. A novel L23-related gene 40 kb downstream of the imprinted H19 gene is biallelically expressed in mid-fetal and adult human tissues. Hum. Mol. Genet. 4: 1499–1507.
  • Wang, Q., M. E. Curran, I. Splawski, T. C. Burn, J. M. Millholland, T. J. VanRaay, J. Shen, K. W. Timothy, G. M. Vincent, T. de Jager, P. J. Schwatz, J. A. Towbin, A. J. Moss, D. L. Atkinson, G. M. Landes, T. D. Connors, and M. T. Keating 1996. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 12: 17–23.
  • Webber, A., R. I. Ingram, J. Levorse, and S. M. Tilghman 1998. Location of enhancers is essential for imprinting of H19 and Igf2. Nature 391: 711–715.
  • Weksberg, R., D. R. Shen, Y. L. Fei, Q. L. Song, and J. Squire 1993. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat. Genet. 5: 143–150.
  • Wevrick, R., J. A. Kerns, and U. Francke 1994. Identification of a novel paternally expressed gene in the Prader-Willi syndrome region. Hum. Mol. Genet. 3: 1877–1882.
  • Willard, H. F., C. J. Brown, L. Carrel, B. Hendrich, and A. P. Miller 1993. Epigenetic and chromosomal control of gene expression: molecular and genetic analysis of X chromosome inactivation. Cold Spring Harbor Symp. Quant. Biol. 58: 315–322.
  • Wutz, A., O. W. Smrzka, N. Schweifer, K. Schellander, E. F. Wagner, and D. P. Barlow 1997. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389: 745–749.
  • Xu, Y., C. G. Goodyer, C. Deal, and C. Polychronakos 1993. Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem. Biophys. Res. Commun. 197: 747–754.
  • Yan, Y., J. Frisén, M.-H. Lee, J. Massagué, and M. Barbacid 1997. Ablation of the CDK inhibitor p57KIP2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev. 11: 973–983.
  • Zemel, S., M. S. Bartolomei, and S. M. Tilghman 1992. Physical linkage of two mammalian imprinted genes. Nat. Genet. 2: 61–65.
  • Zhang, P., N. J. Liégeois, C. Wong, M. Finegold, H. Hou, J. C. Thompson, A. Silverman, J. W. Harper, R. A. DePinho, and S. J. Elledge 1997. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387: 151–158.
  • Zhou, Q.-Y., C. J. Quaife, and R. D. Palmiter 1995. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 374: 640–643.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.