70
Views
663
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

XRCC1 Is Specifically Associated with Poly(ADP-Ribose) Polymerase and Negatively Regulates Its Activity following DNA Damage

, , , , &
Pages 3563-3571 | Received 04 Sep 1997, Accepted 06 Mar 1998, Published online: 28 Mar 2023

REFERENCES

  • Althaus, F. R., and C. Richter 1987. ADP-ribosylation of proteins. Enzymology and biological significance. Mol. Biol. Biochem. Biophys. 37: 1–237.
  • Barlow, C., S. Hirotsune, R. Paylor, M. Liyanage, M. Eckhaus, F. Collins, Y. Shilo, J. N. Crawley, T. Ried, D. Tagle, and A. Wynshaw-Boris 1996. Atm-deficient mice: a paradigm of ataxia telangectasia. Cell 86: 159–171.
  • Biedermann, K. A., J. Sun, A. J. Giaccia, L. M. Tosto, and J. M. Brown 1991. Scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc. Natl. Acad. Sci. USA 88: 1394–1397.
  • Bork, P., K. Hofmann, P. Bucher, A. F. Neuwald, S. F. Altschul, and E. V. Koonin 1997. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 11: 68–76.
  • Brookman, K. W., R. S. Tebbs, S. A. Allen, J. D. Tucker, R. R. Swiger, J. E. Lamerdin, A. V. Carrano, and L. H. Thompson 1994. Isolation and characterization of mouse Xrcc-1, a DNA repair gene affecting ligation. Genomics 22: 180–188.
  • Caldecott, K., S. Aoufouchi, P. Johnson, and S. Shall 1996. XRCC1 polypeptide interacts with DNA polymerase β and possibly poly(ADP-ribose)polymerase, and DNA ligase III is a novel molecular “nick sensor” in vitro. Nucleic Acids Res. 24: 4387–4394.
  • Caldecott, K. W., C. K. McKeown, J. D. Tucker, S. Ljungquist, and L. H. Thompson 1994. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol. Cell. Biol. 14: 68–76.
  • Caldecott, K. W., J. D. Tucker, L. H. Stanker, and L. H. Thompson 1995. Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells. Nucleic Acids Res. 23: 4836–4843.
  • Callebaut, I., and J. P. Mornon 1997. From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett. 400: 25–30.
  • Cappelli, E., R. Taylor, M. Cevasco, A. Abbondandolo, K. Caldecott, and G. Frosina 1997. Involvement of XRCC1 and DNA ligase III gene products in DNA base excision. J. Biol. Chem. 272: 23970–23975.
  • Chatton, B., A. Bahr, J. Acker, and C. Kedinger 1995. Eukaryotic GST fusion vector for the study of protein-protein associations in vivo: application to interaction of ATFa with Jun and Fos. BioTechniques 18: 142–145.
  • Chien, C. T., P. L. Bartel, R. Sternglanz, and S. Fields 1991. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88: 9578–9582.
  • de Murcia, G., and J. Ménissier-de Murcia 1994. Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem. Sci. 19: 172–176.
  • Ding, R., and M. Smulson 1994. Depletion of nuclear poly(ADP-ribose) polymerase by antisense RNA expression: influences on genomic stability, chromatin organization, and carcinogen cytotoxicity. Cancer Res. 54: 4627–4634.
  • Frosina, G., P. Fortini, O. Rossi, F. Carrozzino, A. Abbondandolo, and E. Dogliotti 1994. Repair of abasic sites by mammalian cell extracts. Biochem. J. 304: 699–705.
  • Frosina, G., P. Fortini, O. Rossi, F. Carrozzino, G. Raspaglio, L. S. Cox, D. P. Lane, A. Abbondandolo, and E. Dogliotti 1996. Two pathways for base excision repair in mammalian cells. J. Biol. Chem. 271: 9573–9578.
  • Gradwohl, G., J. Ménissier-de Murcia, M. Molinete, F. Simonin, M. Koken, J. H. Hoeijmakers, and G. de Murcia 1990. The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc. Natl. Acad. Sci. USA 87: 2990–2994.
  • Griesenbeck, J., S. L. Oei, P. Mayer-Kuckuk, M. Ziegler, G. Buchlow, and M. Schweiger 1997. Protein-protein interaction of the human poly(ADP-ribose)polymerase depends on the functional state of the enzyme. Biochemistry 36: 7297–7304.
  • Hoy, C. A., J. C. Fuscoe, and L. H. Thompson 1987. Recombination and ligation of transfected DNA in CHO mutant EM9, which has high levels of sister chromatid exchange. Mol. Cell. Biol. 7: 2007–2011.
  • Ikejima, M., D. Bohannon, D. M. Gill, and L. H. Thompson 1984. Poly(ADP-ribose) metabolism appears normal in EM9, a mutagen-sensitive mutant of CHO cells. Mutat. Res. 128: 213–220.
  • Kaiser, P., B. Auer, and M. Schweiger 1992. Inhibition of cell proliferation in Saccharomyces cerevisiae by expression of human NAD+ ADP-ribosyltransferase requires the DNA binding domain (“zinc fingers”). Mol. Gen. Genet. 232: 231–239.
  • Kalderon, D., W. D. Richardson, A. F. Markham, and A. E. Smith 1984. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311: 33–38.
  • Klungland, A., and T. Lindahl 1997. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 16: 3341–3348.
  • Koonin, E. V., S. F. Altschul, and P. Bork 1996. Functional motifs. Nat. Genet. 13: 266–267.
  • Kubota, Y., R. A. Nash, A. Klungland, D. Barnes, and T. Lindahl 1996. Reconstitution of DNA base excision repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J. 23: 6662–6670.
  • Küpper, J.-H., M. Müller, M. K. Jacobson, J. Tatsumi-Miyajima, D. L. Coyle, E. L. Jacobson, and A. Bürkle 1995. trans-Dominant inhibition of poly(ADP-ribosyl)ation sensitizes cells against γ-irradiation and N-methyl-N′-nitro-N-nitrosoguanidine but does not limit DNA replication of a polyomavirus replicon. Mol. Cell. Biol. 15: 3154–3163.
  • Lamarre, D., B. Talbot, G. de Murcia, C. Laplante, Y. Leduc, A. Mazen, and G. G. Poirier 1988. Structural and functional analysis of poly(ADP-ribose) polymerase: an immunological study. Biochim. Biophys. Acta 950: 147–160.
  • Lautier, D., J. Lagueux, J. Thibodeau, L. Menard, and G. G. Poirier 1993. Molecular and biochemical features of poly (ADP-ribose) metabolism. Mol. Cell. Biochem. 122: 171–193.
  • Lehmann, A. R. 1993. Duplicated region of sequence similarity to the human XRCC1 DNA repair gene in the Schizosaccharomyces pombe rad4/cut5 gene. Nucleic Acids Res. 21: 5274.
  • Lin, W., J. C. Amé, N. Aboul-Ela, E. L. Jacobson, and M. K. Jacobson 1997. Isolation and characterization of the cDNA encoding bovine poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 272: 11895–11901.
  • Ljungquist, S., K. Kenne, L. Olsson, and M. Sandstrom 1994. Altered DNA ligase III activity in the CHO EM9 mutant. Mutat. Res. 314: 177–186.
  • Mackey, Z. B., W. Ramos, D. S. Levin, C. A. Walter, J. R. McCarrey, and A. E. Tomkinson 1997. An alternative splicing event which occurs in mouse pachytene spermatocytes generates a form of DNA ligase III with distinct biochemical properties that may function in meiotic recombination. Mol. Cell. Biol. 17: 989–998.
  • Masson, M., J. Ménissier-de Murcia, M. J. Mattei, G. de Murcia, and C. P. Niedergang 1997. Poly(ADP-ribose)polymerase interacts with a novel human ubiquitin conjugating enzyme: hUbc9. Gene 190: 287–296.
  • Mazin, A., T. Timchenko, J. Menissier-de Murcia, V. Schreiber, J. F. Angulo, G. de Murcia, and R. Devoret 1994. Kin17, a mouse nuclear zinc finger protein that binds preferentially to curved DNA. Nucleic Acids Res. 22: 4335–4341.
  • Ménissier de Murcia, J., C. Niedergang, C. Trucco, M. Ricoul, B. Dutrillaux, M. Mark, F. J. Olivier, M. Masson, A. Dierich, M. LeMeur, C. Walztinger, P. Chambon, and G. de Murcia 1997. Requirement of poly(ADP-ribose)polymerase in recovery from DNA damage in mice and in cells. Proc. Natl. Acad. Sci. USA 94: 7303–7307.
  • Molinete, M., W. Vermeulen, A. Burkle, J. Ménissier de Murcia, J. H. Kupper, J. H. Hoeijmakers, and G. de Murcia 1993. Overproduction of the poly(ADP-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells. EMBO J. 12: 2109–2117.
  • Nash, R. A., K. W. Caldecott, D. E. Barnes, and T. Lindahl 1997. XRCC1 protein interacts with one of two distinct forms of DNA ligase III. Biochemistry 36: 5207–5211.
  • Niedergang, C., H. Okazaki, and P. Mandel 1979. Properties of purified calf thymus poly(adenosine diphosphate ribose) polymerase. Eur. J. Biochem. 102: 43–57.
  • Oei, S. L., J. Griesenbeck, and M. Schweiger 1997. The role of poly ADP-ribosylation. Rev. Physiol. Biochem. Pharmacol. 131: 4135–4137.
  • Saka, Y., and M. Yanagida 1993. Fission yeast cut5+, required for S phase onset and M phase restraint, is identical to the radiation-damage repair gene rad4+. Cell 74: 383–393.
  • Satoh, M. S., and T. Lindahl 1992. Role of poly(ADP-ribose) formation in DNA repair. Nature 356: 356–358.
  • Satoh, M. S., G. G. Poirier, and T. Lindahl 1994. Dual function for poly(ADP-ribose) synthesis in response to DNA strand breakage. Biochemistry 33: 7099–7106.
  • Schreiber, V., G. de Murcia, and J. Ménissier-de Murcia 1994. A eukaryotic expression vector for the study of nuclear localization signals. Gene 150: 411–412.
  • Schreiber, V., D. Hunting, C. Trucco, B. Gowans, D. Grunwald, G. de Murcia, and J. Ménissier de Murcia 1995. A dominant-negative mutant of human poly(ADP-ribose) polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage. Proc. Natl. Acad. Sci. USA 92: 4753–4757.
  • Schreiber, V., M. Molinete, H. Boeuf, G. de Murcia, and J. Ménissier-de Murcia 1992. The human poly(ADP-ribose) polymerase nuclear localization signal is a bipartite element functionally separate from DNA binding and catalytic activity. EMBO J. 11: 3263–3269.
  • Simonin, F., J. P. Briand, S. Muller, and G. de Murcia 1991. Detection of poly(ADP-ribose) polymerase in crude extracts by activity-blot. Anal. Biochem. 195: 226–231.
  • Simonin, F., O. Poch, M. Delarue, and G. de Murcia 1993. Identification of potential active-site residues in the human poly(ADP-ribose) polymerase. J. Biol. Chem. 268: 8529–8535.
  • Sobol, R. W., J. K. Horton, R. Kuhn, H. Gu, R. K. Singhal, R. Prasad, K. Rajewsky, and S. H. Wilson 1996. Requirement of mammalian DNA polymerase beta in base excision repair. Nature 379: 183–186.
  • Tebbs, R. S., J. J. Meneses, R. A. Pedersen, L. H. Thompson, and J. E. Cleaver 1996. XRCC1 knockout mice are nonviable. Environ. Mol. Mutagen. 27: 68.
  • Thompson, L. H., K. V. Brookman, L. E. Dillehay, A. V. Carrano, C. L. Mazrimas, and J. L. Minkler 1982. A CHO-cell line strain having hypersensitivity to mutagens, a defect in DNA strand-break repair, and an extraordinary baseline frequency of sister chromatid exchange. Mutat. Res. 95: 427–440.
  • Thompson, L. H., K. W. Brookman, N. J. Jones, S. A. Allen, and A. V. Carrano 1990. Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol. Cell. Biol. 10: 6160–6171.
  • Trucco, C., F. J. Javier Oliver, G. de Murcia, and J. Ménissier-de Murcia. DNA repair defect in poly(ADP-ribose) polymerase-deficient cell ines. Nucleic Acids Res., in press.
  • Vojtek, A. B., S. M. Hollenberg, and J. A. Cooper 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74: 205–214.
  • Wang, Z. Q., B. Auer, L. Stingl, H. Berghammer, D. Haidacher, M. Schweiger, and E. W. Wagner 1995. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 9: 509–520.
  • Wang, Z. Q., L. Stingl, C. Morrison, M. Jantsch, M. Los, K. Schulze-Osthoff, and E. F. Wagner 1997. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev. 11: 2347–2358.
  • Wei, Y. F., P. Robins, K. Carter, K. Caldecott, D. J. C. Pappin, G. L. Yu, R. P. Wang, B. K. Shell, R. A. Nash, P. Schär, D. E. Barnes, W. A. Haseltine, and T. Lindahl 1995. Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and genetic recombination. Mol. Cell. Biol. 15: 3206–3216.
  • Wilson, D. M.III, and L. H. Thompson 1997. Life without DNA repair. Proc. Natl. Acad. Sci. USA 94: 12754–12757.
  • Xanthoudakis, S., R. J. Smeyne, J. D. Wallace, and T. Curran 1996. The redox/DNA repair patch protein, Ref-1, is essential for early embryonic development in mice. Proc. Natl. Acad. Sci. USA 93: 8919–8923.
  • Zdzienicka, M. Z., G. P. van der Schans, A. T. Natarajan, L. H. Thompson, I. Neuteboom, and J. W. I. M. Simons 1992. A Chinese hamster ovary cell mutant (EM-C11) with sensitivity to simple alkylating agents and a very high level of sister chromatid exchanges. Mutagenesis 7: 265–269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.