33
Views
147
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The MYND Motif Is Required for Repression of Basal Transcription from the Multidrug Resistance 1 Promoter by the t(8;21) Fusion Protein

, , &
Pages 3604-3611 | Received 02 Dec 1997, Accepted 24 Mar 1998, Published online: 28 Mar 2023

REFERENCES

  • Arceci, R. J. 1993. Clinical significance of P-glycoprotein in multidrug resistance malignancies. Blood 81: 2215–2222.
  • Berger, J., J. Hauber, R. Hauber, R. Geiger, and B. R. Cullen 1988. Secreted placental alkaline phophatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66: 1–10.
  • Bloomfield, C. D. 1992. Prognostic factors for selecting curative therapy for adult acute myeloid leukemia. Leukemia 6: 65–67.
  • Castilla, L. H., C. Wijmenga, Q. Wang, T. Stacy, N. Speck, M. Eckhaus, M. Marin-Padilla, F. S. Collins, A. Wynashaw-Boris, and P. P. Liu 1996. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MY11. Cell 87: 687–696.
  • Chin, K.-V., K. Ueda, I. Pastan, and M. Gottesman 1992. Modulation of activity of the promoter of the human MDR1 gene by ras and p53. Science 255: 459–462.
  • Combates, N. J., R. W. Rzepka, Y. N. Chen, and D. Cohen 1994. NF-IL6, a member of the C/EBP family of transcription factors, binds and trans-activates the human MDR-1 promoter. J. Biol. Chem. 269: 29715–29719.
  • Cowell, I. 1994. Repression versus activation in the control of gene transcription. Trends Biochem. Sci. 19: 38–42.
  • Crook, T., D. Wrede, and K. H. Vousden 1991. p53 point mutations in HPV negative human cervical carcinoma cell lines. Oncogene 6: 873–875.
  • Dastague, N., C. Payen, M. Lafage-Pochitaloff, P. Bernard, D. Leroux, F. Huguet-Rigal, A. M. Stoppa, G. Marit, L. Molina, and M. Michallet 1995. Prognostic significance of karyotype in de novo adult acute myeloid leukemia. The BGMT group. Leukemia 9: 1491–1498.
  • Erickson, P. F., G. Dessev, R. S. Lasher, G. Philips, M. Robinson, and H. A. Drabkin 1996. ETO and AML1 phosphoproteins are expressed in CD34+ hematopoietic progenitors: implications for t(8;21) leukemogenesis and monitoring residual disease. Blood 88: 1813–1823.
  • Fears, S., M. Gavin, D. E. Zhang, C. Hetherington, Y. Ben-David, J. D. Rowley, and G. Nucifora 1997. Functional characterization of ETV6 and ETV6/CBFA2 in the regulation of the MCSFR proximal promoter. Proc. Natl. Acad. Sci. USA 94: 1949–1954.
  • Feinstein, P. G., K. Kornfeld, D. S. Hogness, and R. S. Mann 1995. Identification of homeotic target genes in Drosophila melanogaster including nervy, a proto-oncogene homologue. Genetics 140: 573–586.
  • Frank, R., J. Zhang, H. Uchida, S. Meyers, S. W. Hiebert, and S. D. Nimer 1995. The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 11: 2667–2674.
  • Friedman, A. D. 1996. Regulation of immature myeloid cell differentiation by PEBP2/CBF, Myb, C/EBP, and Ets family members. Curr. Top. Microbiol. Immunol. 211: 149–157.
  • Giese, K., C. Kingsley, J. R. Kirshner, and R. Grosschedl 1995. Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions. Genes Dev. 9: 995–1008.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2: 1044–1051.
  • Gross, C. T., and W. McGinnis 1996. DEAF-1, a novel protein that binds an essential region in a Deformed response element. EMBO J. 15: 1961–1970.
  • Herschbach, B. M., and A. D. Johnson 1993. Transcriptional repression in eukaryotes. Annu. Rev. Cell Biol. 9: 479–509.
  • Hiebert, S. W., W. Sun, J. N. Davis, T. Golub, S. Shurtleff, A. Buijs, J. R. Downing, G. Grosveld, M. F. Roussel, D. G. Gilliland, N. Lenny, and S. Meyers 1996. The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol. Cell. Biol. 16: 1349–1355.
  • Hoey, T., R. O. Weinzierl, G. Gill, J. L. Chen, B. D. Dynlacht, and R. Tjian 1993. Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72: 247–260.
  • Joventino, L. P., W. Stock, N. J. Lane, K. M. Daly, R. Mick, M. M. Le Beau, and R. A. Larson 1995. Certain HLA antigens are associated with specific morphologic and cytogenetic subsets of acute myeloid leukemia. Leukemia 9: 433–439.
  • Kalwinski, D. K., S. C. Raimondi, M. J. Schell, J. Mirro, V. M. Santana, F. Behm, G. V. Dahl, and D. Williams 1990. Prognostic importance of cytogenetic subgroups in de novo pediatric acute nonlymphocytic leukemia. J. Clin. Oncol. 8: 75–83.
  • Kitabayashi, I., K. Ida, F. Morohoshi, A. Yokoyama, N. Mitsuhashi, K. Shimizu, N. Nomura, Y. Hayashi, and M. Ohki 1998. The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1. Mol. Cell. Biol. 18: 846–858.
  • Kunkel, T. A. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82: 488–494.
  • Leith, C. P., K. J. Kopecky, J. Godwin, T. McConnel, M. L. Slovak, I.-M. Chen, D. R. Head, F. R. Appelbaum, and C. L. Willman 1997. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 9: 3323–3329.
  • Lenny, N., S. Meyers, and S. W. Hiebert 1995. Functional domains of the t(8;21) fusion protein, AML-1/ETO. Oncogene 11: 1761–1769.
  • Lenny, N., J. J. Westendorf, and S. W. Hiebert 1997. Transcriptional regulation during myelopoiesis. Mol. Biol. Rep. 24: 157–168.
  • Liu, P., S. A. Tarle, A. Hajra, D. F. Claxton, P. Marlton, M. Freedman, M. J. Siciliano, and F. S. Collins 1993. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 261: 1041–1044.
  • Lutterbach, B., and S. W. Hiebert. Unpublished data.
  • Lutterbach, B., J. J. Westendorf, A. Patten, K. Huynh, V. J. Bardwell, R. M. Lavinsky, M. G. Rosenfeld, E. Seto, and S. W. Hiebert. Mechanism of transcriptional repression by the t(8;21) fusion protein: ETO interacts with the N-CoR and mSin3 corepressors. Submitted for publication.
  • Martin, P., and T. Papayannopoulou 1982. A new human erythroleukemia cell line with spontaneous and induced globin expression. Science 216: 1233–1237.
  • Martinez-Climent, J. A., N. J. Lane, C. M. Rubin, E. Morgan, H. S. Johnstone, R. Mick, S. B. Murphy, J. W. Vardiman, R. A. Larson, M. M. Le Beau, and J. D. Rowley 1995. Clinical and prognostic significance of chromosomal abnormalities in childhood acute myeloid leukemia de novo. Leukemia 9: 95–101.
  • Meyers, S., J. R. Downing, and S. W. Hiebert 1993. Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol. Cell. Biol. 13: 6336–6345.
  • Meyers, S., and S. W. Hiebert 1995. Indirect and direct disruption of transcriptional regulation in cancer: E2F and AML-1. Crit. Rev. Eukaryot. Gene Expr. 5: 365–383.
  • Meyers, S., N. Lenny, and S. W. Hiebert 1995. The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol. Cell. Biol. 15: 1974–1982.
  • Meyers, S., N. Lenny, W. Sun, and S. W. Hiebert 1996. AML-2 is a potential target for transcriptional regulation by the t(8;21) and t(12;21) fusion proteins in acute leukemia. Oncogene 13: 303–312.
  • Miyoshi, H., T. Kozu, K. Shimizu, K. Enomoto, N. Maseki, Y. Kaneko, N. Kamada, and M. Ohki 1993. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J. 12: 2715–2721.
  • Miyoshi, H., K. Shimizu, T. Kou, N. Maseki, Y. Kaneko, and M. Ohki 1991. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML. Proc. Natl. Acad. Sci. USA 88: 10431–10434.
  • Norton, P. A., and J. M. Coffin 1985. Bacterial B-galactosidase as a marker of Rous sacoma virus gene expression and replication. Mol. Cell. Biol. 5: 281–290.
  • Okuda, T., J. van Deursen, S. W. Hiebert, G. Grosveld, and J. R. Downing 1996. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330.
  • Pearson, L., C. P. Leith, M. H. Duncan, I. M. Chen, T. McConnell, K. Trinkaus, K. Foucar, and C. L. Willman 1996. Multidrug resistance-1 (MDR1) expression and functional dye/drug efflux is highly correlated with the t(8;21) chromosomal translocation in pediatric acute myeloid leukemia. Leukemia 10: 1274–1282.
  • Pietenpol, J. A., T. Tokino, S. Thiagalingam, W. S. el-Deiry, K. W. Kinzler, and B. Vogelstein 1994. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci. USA 91: 1998–2002.
  • Porwit-MacDonald, A., G. Janossey, K. Ivory, D. Swirsky, R. Peters, K. Wheatley, H. Walker, A. Turker, A. H. Goldstone, and A. Burnett 1996. Leukemia-associated changes identified by quantitative flow cytometry. IV. CD34 overexpression in acute myelogenous leukemia M2 with t(8;21). Blood 87: 1162–1169.
  • Schuetz, J. Unpublished data.
  • Shurtleff, S. A., A. Buijs, F. G. Behm, J. E. Rubnitz, S. C. Raimondi, M. L. Hancock, G. C. Chan, C. H. Pui, G. Grosveld, and J. R. Downing 1995. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 9: 1985–1989.
  • Thottassery, J. V., G. P. Zambetti, D. Arimori, E. G. Schuetz, and J. D. Schuetz 1997. p53-dependent regulation of MDR1 gene expression causes selective resistance to chemotherapeutic agents. Proc. Natl. Acad. Sci. USA 94: 11037–11042.
  • Uchida, H., J. Zhang, and S. D. Nimer 1997. Am11a and Am11b can transactivate the human Il-3 promoter. J. Immunol. 158: 2251–2258.
  • Wang, Q., T. Stacy, J. D. Miller, A. F. Lewis, T.-L. Gu, X. Huang, J. H. Bushweller, J.-C. Bories, F. W. Alt, G. Ryan, P. P. Liu, A. Wynshaw-Boris, M. Binder, M. Marin-Padilla, A. H. Sharpe, and N. A. Speck 1996. The CBFβ subunit is essential for CBFα2 (AML1) function in vivo. Cell 87: 697–708.
  • Westendorf, J. J., C. M. Yamamoto, N. Lenny, J. R. Downing, M. E. Selsted, and S. W. Hiebert 1998. The t(8;21) fusion product, AML-1–ETO, associates with C/EBP-α, inhibits C/EBP-α-dependent transcription, and blocks granulocytic differentiation. Mol. Cell. Biol. 18: 322–333.
  • Yergeau, D. A., C. J. Hetherington, Q. Wang, P. Zhang, A. Sharpe, M. Binder, M. Marin-Padilla, D. G. Tenen, N. A. Speck, and D. E. Zhang 1997. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML-ETO fusion gene. Nat. Genet. 15: 303–306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.