13
Views
64
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Role of Histone H1 as an Architectural Determinant of Chromatin Structure and as a Specific Repressor of Transcription onXenopus Oocyte 5S rRNA Genes

&
Pages 3668-3680 | Received 20 Jan 1998, Accepted 09 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Allan, J., P. G. Hartman, C. Crane-Robinson, and F. X. Aviles 1980. The structure of histone H1 and its location in chromatin. Nature 288: 675–679.
  • Andrews, M. T., and D. D. Brown 1987. Transient activation of oocyte 5S RNA genes in Xenopus embryos by raising the level of the trans-acting factor TFIIIA. Cell 51: 445–453.
  • Arents, G., R. W. Burlingame, B. W. Wang, W. E. Love, and E. N. Moudrianakis 1991. The nucleosomal core histone octamer at 3.1Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA 88: 10148–10152.
  • Bazett-Jones, D. P., B. LeBlanc, M. Herfort, and T. Moss 1994. Short range DNA looping by the Xenopus HMG-box transcription factor, xUBF. Science 264: 1134–1136.
  • Becker, P. B. 1994. The establishment of active promoters in chromatin. Bioessays 16: 541–547.
  • Birkenmeier, E. H., D. D. Brown, and E. Jordan 1978. A nuclear extract of Xenopus laevis oocytes that accurately transcribes 5S RNA genes. Cell 15: 1077–1086.
  • Bogenhagen, D. F., S. Sakonju, and D. D. Brown 1980. A control region in the center of the 5S RNA gene directs specific initiation of transcription II. The 3′ border of the region. Cell 19: 27–35.
  • Bouvet, P., S. Dimitrov, and A. P. Wolffe 1994. Specific regulation of chromosomal 5S rRNA gene transcription in vivo by histone H1. Genes Dev. 8: 1147–1159.
  • Burley, S. K., X. Xie, K. L. Clark, and F. Shu 1997. Histone-like transcription factors in eukaryotes. Curr. Opin. Struct. Biol. 7: 94–102.
  • Camerini-Otero, R. D., B. Sollner-Webb, and G. Felsenfeld 1976. The organization of histones and DNA in chromatin: evidence for an arginine-rich histone kernel. Cell 8: 333–347.
  • Carroll, D., and D. D. Brown 1976. Repeating units of Xenopus laevis oocyte type 5S RNA genes are heterogeneous in length. Cell 7: 467–475.
  • Chipev, C. C., and A. P. Wolffe 1992. Chromosomal organization of Xenopus laevis oocyte and somatic 5S rRNA genes in vivo. Mol. Cell. Biol. 12: 45–55.
  • Churchill, M. E., and M. Suzuki 1989. SPKK motifs prefer to bind to DNA at A-T rich sites. EMBO J. 8: 4189–4195.
  • Cirillo, L. A., C. E. McPherson, P. Bossard, K. Stevens, S. Cherian, E. Y. Shim, K. L. Clark, S. K. Burley, and K. S. Zaret 1998. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J. 17: 244–254.
  • Clark, K. L., E. D. Halay, E. Lai, and S. K. Burley 1993. Co crystal structure of the HNF-3/fork head DNA recognition motif resembles histone H5. Nature 364: 412–417.
  • Cooper, J. P., S. Y. Roth, and R. T. Simpson 1994. The global transcriptional regulators SSN6 and Tup1, play distinct roles in the establishment of a repressive chromatin structure. Genes Dev. 8: 1400–1410.
  • Crane-Robinson, C. 1997. Where is the globular domain of linker histone located on the nucleosome? Trends Biochem. Sci. 22: 75–77.
  • Croston, G. E., K. A. Kenigan, L. M. Lira, D. R. Marshak, and J. T. Kadonaga 1991. Sequence specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science 251: 643–649.
  • Dong, F., J. C. Hansen, and K. E. van Holde 1990. DNA and protein determinants of nucleosome positioning on sea urchin 5S rRNA gene sequences in vitro. Proc. Natl. Acad. Sci. USA 87: 5724–5728.
  • Edmondson, D. G., M. M. Smith, and S. Y. Roth 1996. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev. 10: 1247–1259.
  • Engelke, D. R., and J. M. Gottesfeld 1990. Chromosomal footprinting of transcriptionally active and inactive oocyte-type 5S RNA genes of Xenopus laevis. Nucleic Acids Res. 18: 6031–6037.
  • Fedoroff, N. V., and D. D. Brown 1978. The nucleotide sequence of oocyte 5S DNA in Xenopus laevis. I. The AT-rich spacer. Cell 13: 701–716.
  • Fox, K. R., and M. J. Waring 1984. DNA structural variations produced by actinomycin and distamycin as revealed by DNase I footprinting. Nucleic Acids Res. 12: 9271–9285.
  • Giese, K., C. Kingsley, J. R. Kirshner, and R. Grosschedl 1995. Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interaction. Genes Dev. 9: 995–1008.
  • Godde, J. S., and A. P. Wolffe 1996. Nucleosome assembly of CTG triplet repeats. J. Biol. Chem. 271: 15222–15229.
  • Goppelt, A., G. Stelzer, F. Lottspeich, and M. Meisterernst 1996. A mechanism for repression of class II gene transcription through specific binding of NC2 to TBP-promoter complexes via heterodimeric histone fold domains. EMBO J. 15: 3105–3156.
  • Gottesfeld, J. M. 1980. Organization of 5S genes in chromatin of Xenopus laevis. Nucleic Acids Res. 8: 905–922.
  • Gottesfeld, J. M. 1987. DNA sequence-directed nucleosome reconstitution on 5S RNA genes of Xenopus laevis. Mol. Cell. Biol. 7: 1612–1622.
  • Gottesfeld, J. M., and L. S. Bloomer 1980. Non random alignment of nucleosomes on 5S RNA genes of Xenopus laevis. Cell 21: 751–760.
  • Grosschedl, R. 1995. Higher-order nucleoprotein complexes in transcription: analogies with site-specific recombination. Curr. Opin. Cell Biol. 7: 362–370.
  • Grosschedl, R., K. Giese, and J. Pagel 1994. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 10: 94–100.
  • Gurdon, J. B., C. Dingwall, R. A. Laskey, and L. J. Korn 1982. Developmental inactivity of 5S RNA genes persists when chromosomes are cut between genes. Nature 299: 652–653.
  • Hayes, J. J. 1996. Site-directed cleavage of DNA by a linker histone-Fe(II) EDTA conjugate: localization of a globular domain binding site within a nucleosome. Biochemistry 35: 11931–11937.
  • Hayes, J. J., and K. R. Clemens 1992. Location of contacts between individual zinc fingers of Xenopus laevis transcription factor IIIA and the internal control region of a 5S RNA gene. Biochemistry 31: 11600–11605.
  • Hayes, J. J., R. Kaplan, K. Ura, D. Pruss, and A. P. Wolffe 1996. A putative DNA binding surface in the globular domain of a linker histone is not essential for specific binding to the nucleosome. J. Biol. Chem. 271: 25817–25822.
  • Hayes, J. J., and T. D. Tullius 1992. Structure of the TFIIIA/5S DNA complex. J. Mol. Biol. 227: 407–417.
  • Hayes, J. J., T. D. Tullius, and A. P. Wolffe 1990. The structure of DNA in a nucleosome. Proc. Natl. Acad. Sci. USA 87: 7405–7409.
  • Hayes, J. J., and A. P. Wolffe 1992. The interaction of transcription factors with nucleosomal DNA. Bioessays 14: 597–603.
  • Hayes, J. J., and A. P. Wolffe 1993. Preferential and asymmetric interaction of linker histones with 5S DNA in the nucleosome. Proc. Natl. Acad. Sci. USA 90: 6415–6419.
  • Hayes, J. J., D. Pruss, and A. P. Wolffe 1994. Histone domains required to assemble a chromatosome including the Xenopus borealis somatic 5S rRNA gene. Proc. Natl. Acad. Sci. USA 91: 7817–7821.
  • Jerzmanowski, A., and R. D. Cole 1990. Flanking sequences of Xenopus 5S RNA genes determine differential inhibition by H1 histone in vitro. J. Biol. Chem. 265: 10726–10732.
  • Juan, L. J., R. Utley, C. C. Adams, M. Vettese-Dadey, and J. L. Workman 1994. Differential repression of transcription factor binding by histone H1 is regulated by the core histone amino termini. EMBO J. 13: 6031–6040.
  • Juan, L. J., R. T. Utley, V. Vignali, L. Bohm, and J. L. Workman 1997. H1-mediated repression of transcription factor binding to a stably positioned nucleosome. J. Biol. Chem. 272: 3635–3640.
  • Kamakaka, R. T., M. Bulger, and J. T. Kadonaga 1993. Potentiation of RNA polymerase II transcription by Gal4-VP16 during but not after DNA replication and chromatin assembly. Genes Dev. 7: 1779–1795.
  • Kandolf, H. 1994. The H1A histone variant is the in vivo repressor of oocyte-type 5S gene transcription in Xenopus laevis embryos. Proc. Natl. Acad. Sci. USA 91: 7257–7260.
  • Kas, E., E. Izaurralde, and U. K. Laemmli 1989. Specific inhibition of DNA binding to nuclear scaffolds and H1 by distamycin. The role of oligo(dA) · oligo(dT) tracts. J. Mol. Biol. 210: 587–599.
  • Keller, H. J., P. J. Romaniuk, and J. M. Gottesfeld 1992. Interaction of Xenopus TFIIIC with the TFIIIA.5S RNA gene complex. J. Biol. Chem. 267: 18190–18198.
  • Kopka, M. L., C. Yoon, D. Goodsell, P. Pjura, and R. E. Dickerson 1985. The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc. Natl. Acad. Sci. USA 82: 1376–1380.
  • Korn, L. J., and D. D. Brown 1978. Nucleotide sequence of Xenopus borealis oocyte 5S DNA: comparison of sequences that flank several related eucaryotic genes. Cell 15: 1145–1156.
  • Laybourn, P. J., and J. T. Kadonaga 1991. Role of nucleosome cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254: 238–245.
  • Love, J. J., X. Li, D. A. Case, K. Giese, R. Grosschedl, and P. E. Wright 1995. Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376: 791–795.
  • McConkey, G. A., and D. F. Bogenhagen 1988. TFIIIA binds with equal affinity to somatic and major oocyte 5S RNA genes. Genes Dev. 2: 205–214.
  • McPherson, C. E., R. Horowitz, C. L. Woodcock, C. Jiang, and K. S. Zaret 1996. Nucleosome positioning properties of the albumin transcriptional enhancer. Nucleic Acids Res. 24: 397–404.
  • McPherson, C. E., E. Y. Shim, D. S. Friedman, and K. S. Zaret 1993. An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell 75: 387–398.
  • Meersseman, G., S. Pennings, and E. M. Bradbury 1991. Chromatosome positioning on assembled long chromatin: linker histones affect nucleosome placement on 5S DNA. J. Mol. Biol. 220: 89–100.
  • Meersseman, G., S. Pennings, and E. M. Bradbury 1992. Mobile nucleosomes—a general behavior. EMBO J. 11: 2951–2959.
  • Nightingale, K. P., D. Pruss, and A. P. Wolffe 1996. A single high affinity binding site for histone H1 in a nucleosome containing the Xenopus borealis 5S ribosomal RNA gene. J. Biol. Chem. 271: 7090–7094.
  • Noll, M., and R. D. Kornberg 1977. Action of micrococcal nuclease on chromatin and the location of histone H1. J. Mol. Biol. 109: 393–404.
  • Onate, S. E., P. Prendergast, J. P. Wagner, M. Nissen, R. Reeves, D. E. Pettijohn, and D. P. Edwards 1994. The DNA-bending protein HMG-1 enhances progesterone receptor binding to its target DNA sequences. Mol. Cell. Biol. 14: 3376–3391.
  • Owen-Hughes, T., and J. L. Workman 1994. Experimental analysis of chromatin function in transcriptional control. Crit. Rev. Eukaryot. Gene Expr. 4: 1–39.
  • Patikoglou, G., and S. K. Burley 1997. Eukaryotic transcription factor-DNA complexes. Annu. Rev. Biophys. Biomol. Struct. 26: 289–325.
  • Peck, L. J., L. Millstein, P. Eversole-Cire, J. M. Gottesfeld, and A. Varshavsky 1987. Transcriptionally inactive oocyte-type 5S RNA genes of Xenopus laevis are complexed with TFIIIA in vitro. Mol. Cell. Biol. 7: 3503–3510.
  • Pennings, S., G. Meersseman, and E. M. Bradbury 1994. Linker histones H1 and H5 prevent the mobility of positioned nucleosomes. Proc. Natl. Acad. Sci. USA 91: 10275–10279.
  • Perry, M., G. H. Thomson, and R. G. Roeder 1985. Genomic organization and nucleotide sequence of two distinct histone gene clusters from Xenopus laevis: identification of novel conserved upstream sequence elements. J. Mol. Biol. 185: 479–499.
  • Peterson, R. C., J. L. Doering, and D. D. Brown 1980. Characterization of two Xenopus somatic 5S DNAs and one minor oocyte-specific 5S DNA. Cell 20: 131–141.
  • Pieler, T., J. Hamm, and R. G. Roeder 1987. The 5S internal control region is composed of three distinct sequence elements, organized as two functional domains with variable spacing. Cell 48: 91–100.
  • Pierrou, S., M. Hellquist, L. Samuelsson, S. Enerback, and P. Carlsson 1994. Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. EMBO J. 13: 5002–5014.
  • Pruss, D., B. Bartholomew, J. Persinger, J. Hayes, G. Arents, E. N. Moudrianakis, and A. P. Wolffe 1996. An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres. Science 274: 614–617.
  • Pruss, D., J. J. Hayes, and A. P. Wolffe 1995. Nucleosomal anatomy—where are the histones? Bioessays 17: 161–170.
  • Prymakowska-Boasak, M., M. R. Przewloka, J. Iwkiewicz, S. Egierszdorff, M. Kuras, N. Chaubet, C. Gigot, S. Spiker, and A. Jerzmanowski 1996. Histone H1 overexpressed to high level in tobacco affects certain developmental programs but has limited effect on basal cellular functions. Proc. Natl. Acad. Sci. USA 93: 10250–10255.
  • Ramakrishnan, V. 1997. Histone structure and the organization of the nucleosome. Annu. Rev. Biophys. Biomol. Struct. 26: 83–112.
  • Ramakrishnan, V., J. T. Finch, V. Graziano, P. L. Lee, and R. M. Sweet 1993. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362: 219–224.
  • Read, C. M., P. D. Cary, C. Crane-Robinson, P. C. Driscoll, and D. G. Norman 1993. Solution structure of a DNA-binding domain from HMG1. Nucleic Acids Res. 21: 3427–3437.
  • Sakonju, S., D. F. Bogenhagen, and D. D. Brown 1980. A control region in the center of the 5S RNA gene directs specific initiation of transcription 1. The 5′ border of the region. Cell 19: 13–25.
  • Schild, C., F.-X. Claret, W. Wahli, and A. P. Wolffe 1993. A nucleosome-dependent static loop potentiates estrogen-regulated transcription from the Xenopus vitellogenin B1 promoter in vitro. EMBO J. 12: 423–433.
  • Schlissel, M. S., and D. D. Brown 1984. The transcriptional regulation of Xenopus 5S RNA genes in chromatin: the roles of active stable transcription complexes and histone H1. Cell 37: 903–911.
  • Schultz, T. F., S. Spiker, and R. S. Quatrano 1996. Histone H1 enhances the DNA binding activity of the transcription factor EmBP-1. J. Biol. Chem. 271: 25742–25745.
  • Segall, J., T. Matsui, and R. G. Roeder 1980. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III. J. Biol. Chem. 255: 11986–11991.
  • Seguchi, K., Y. Takami, and T. Nakayama 1995. Targeted disruption of 01H1 encoding a particular H1 histone variant causes changes in protein patterns in the DT40 chicken B cell line. J. Mol. Biol. 254: 869–880.
  • Shen, X., and M. A. Gorovsky 1996. Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell 86: 475–483.
  • Shim, E. Y., C. Woodcock, and K. S. Zaret 1998. Nucleosome positioning by the winged helix transcription factor HNF3. Genes Dev. 12: 5–10.
  • Shimamura, A., M. Sapp, A. Rodriguez-Canmpos, and A. Worcel 1989. Histone H1 represses transcription from minichromosomes assembled in vitro. Mol. Cell. Biol. 9: 5573–5584.
  • Shrader, T. E., and D. M. Crothers 1989. Artificial nucleosome positioning sequences. Proc. Natl. Acad. Sci. USA 86: 7418–7422.
  • Simon, R. H., and G. Felsenfeld 1979. A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucleic Acids Res. 6: 689–696.
  • Simpson, R. T. 1978. Structure of the chromatosome, a chromatin core particle containing 160 base pairs of DNA and all the histones. Biochemistry 17: 5524–5531.
  • Simpson, R. T. 1990. Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature 343: 387–389.
  • Simpson, R. T. 1991. Nucleosome positioning: occurrence, mechanisms and functional consequences. Prog. Nucleic Acid Res. Mol. Biol. 40: 143–184.
  • Simpson, R. T., and D. W. Stafford 1983. Structural features of a phased nucleosome core particle. Proc. Natl. Acad. Sci. USA 80: 51–55.
  • Simpson, R. T., F. Thoma, and J. M. Brubaker 1985. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42: 799–808.
  • Steinbach, O., A. P. Wolffe, and R. Rupp 1997. Accumulation of somatic linker histones causes loss of mesodermal competence in Xenopus. Nature 389: 406–412.
  • Straka, C., and W. Horz 1991. A functional role for nucleosomes in the repression of a yeast promoter. EMBO J. 10: 361–368.
  • Stunkel, W., I. Kober, and K. H. Seifart 1997. A nucleosome positioned in the distal promoter region activates transcription of the human U6 gene. Mol. Cell. Biol. 17: 4397–4405.
  • Thanos, D., and T. Maniatis 1992. The high mobility group protein HMGI (Y) is required for NF-κB-dependent virus induction of the human IFN-β gene. Cell 71: 777–789.
  • Tomaszewski, R., and A. Jerzmanowski 1997. The AT-rich flanks of the oocyte-type 5S RNA gene of Xenopus laevis act as a strong local signal for histone H1-mediated chromatin reorganization in vitro. Nucleic Acids Res. 25: 458–465.
  • Ura, K., J. J. Hayes, and A. P. Wolffe 1995. A positive role for nucleosome mobility in the transcriptional activity of chromatin templates: restriction by linker histones. EMBO J. 14: 3752–3765.
  • Ura, K., K. Nightingale, and A. P. Wolffe 1996. Differential association of HMG1 and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression. EMBO J. 15: 4959–4969.
  • Ura, K., H. Kurumizaka, S. Dimitrov, G. Almouzni, and A. P. Wolffe 1997. Histone acetylation: influence on transcription by RNA polymerase, nucleosome mobility and positioning, and linker histone dependent transcriptional repression. EMBO J. 16: 2096–2107.
  • Van Dyke, M. W., R. P. Hertzberg, and P. B. Dervan 1982. Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA.Fe(II). Proc. Natl. Acad. Sci. USA 79: 5470–5474.
  • Varga-Weisz, P. D., T. A. Blank, and P. B. Becker 1995. Energy-dependent chromatin accessibility and nucleosome mobility in a cell free system. EMBO J. 14: 2209–2216.
  • Vermaak, D., O. C. Steinbach, S. Dimitrev, R. A. W. Rupp, and A. P. Wolffe 1998. The globular domain of histone H1 is sufficient to direct specific gene repression in early Xenopus embryos. Curr. Biol. 8: 533–536.
  • Wakefield, L., and J. B. Gurdon 1983. Cytoplasmic regulation of 5S RNA genes in nuclear-transplant embryos. EMBO J. 2: 1613–1619.
  • Wang, Y.-H., and J. Griffith 1995. Expanded CTG triplet blocks from the myotonic dystrophy gene create the strongest known natural nucleosome positioning elements. Genomics 25: 570–573.
  • Weintraub, H. 1984. Histone H1-dependent chromatin superstructures and the suppression of gene activity. Cell 38: 17–27.
  • Weir, H. M., P. J. Kraulis, C. S. Hill, A. R. C. Raine, E. D. Laue, and J. O. Thomas 1993. Structure of the HMG box motif in the B domain of HMG1. EMBO J. 12: 1311–1319.
  • Werner, M. H., J. R. Huth, A. M. Gronenborn, and G. M. Clore 1995. Molecular basis of human 46X,Y sex reversal revealed from the three dimensional solution structure of the human SRY-DNA complex. Cell 81: 705–717.
  • Werner, M. H., and S. K. Burley 1997. Architectural transcription factors: proteins that remodel DNA. Cell 88: 733–736.
  • White, R. 1994. RNA polymerase III transcription. R. G. Landes, Austin, Tex.
  • Wolffe, A. P. 1988. Transcription fraction TFIIIC can regulate differential Xenopus 5S RNA gene transcription in vitro. EMBO J. 7: 1071–1079.
  • Wolffe, A. P. 1989. Dominant and specific repression of Xenopus oocyte 5S RNA genes and satellite I DNA by histone H1. EMBO J. 8: 527–537.
  • Wolffe, A. P. 1994. Architectural transcription factors. Science 264: 1100–1101.
  • Wolffe, A. P. 1994. Nucleosome positioning and modification: chromatin structures that potentiate transcription. Trends Biochem. Sci. 19: 240–244.
  • Wolffe, A. P., and D. D. Brown 1988. Developmental regulation of two 5S ribosomal RNA genes. Science 241: 1626–1632.
  • Wolffe, A. P., and H. R. Drew 1989. Initiation of transcription on nucleosomal templates. Proc. Natl. Acad. Sci. USA 86: 9817–9821.
  • Wolffe, A. P., and J. J. Hayes 1993. The analysis of transcription factor interactions with model nucleosomal templates. Methods Mol. Genet. 2: 314–330.
  • Wong, J., Q. Li, B.-Z. Levi, Y.-B. Shi, and A. P. Wolffe 1997. Structural and functional features of a specific nucleosome containing a recognition element for the thyroid hormone receptor. EMBO J. 16: 7130–7145.
  • Wormington, W. M., D. F. Bogenhagen, E. Jordan, and D. D. Brown 1981. A quantitative assay for Xenopus 5S rRNA gene transcription in vitro. Cell 24: 809–817.
  • Wormington, W. M., and D. D. Brown 1983. Onset of 5S RNA gene regulation during Xenopus embryogenesis. Dev. Biol. 99: 248–257.
  • Wu, H. M., and D. M. Crothers 1984. The locus of sequence-directed and protein-induced DNA bending. Nature 308: 509–513.
  • Xie, X., T. Kokubo, S. L. Cohen, U. A. Mirza, A. Hoffmann, B. T. Chait, R. G. Roeder, Y. Nakatani, and S. K. Burley 1996. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 380: 316–322.
  • Young, D., and D. Carroll 1983. Regular arrangement of nucleosomes on 5S rRNA genes in Xenopus laevis. Mol. Cell. Biol. 3: 720–730.
  • Zappavigna, V., L. Falciola, M. Helmer-Citterich, F. Mavilio, and M. E. Bianchi 1996. HMG 1 interacts with Hox proteins and enhances their DNA binding and transcription activation. EMBO J. 15: 4981–4991.
  • Zaret, K. S. 1995. Nucleoprotein architecture of the albumin transcriptional enhancer. Semin. Cell Biol. 6: 209–218.
  • Zhang, X. Y., F. Fitter, and W. Horz 1983. Eight different highly specific nucleosome phases on alpha-satellite DNA in the African green monkey. Nucleic Acids Res. 11: 4287–4306.
  • Zwieb, C., and R. S. Brown 1990. Absence of substantial bending in Xenopus laevis transcription factor IIIA-DNA complexes. Nucleic Acids Res. 18: 583–587.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.