34
Views
153
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Activation of c-myc Gene Expression by Tumor-Derived p53 Mutants Requires a Discrete C-Terminal Domain

, , , , &
Pages 3735-3743 | Received 19 Aug 1997, Accepted 27 Mar 1998, Published online: 28 Mar 2023

REFERENCES

  • Bentley, D., and M. Groudine 1986. A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature 321: 702–706.
  • Chen, Y., P.-L. Chen, and W.-H. Lee 1994. Hot spot mutants interact specifically with two cellular proteins during progression of the cell cycle. Mol. Cell. Biol. 14: 6764–6772.
  • Chin, K.-V., K. Ueda, I. Pastan, and M. M. Gottesman 1992. Modulation of activity of the promoter of the human MDR1 gene by ras and p53. Science 255: 459–462.
  • Cleveland, J. L., M. Dean, N. Rosenberg, J. W.-Y. Wang, and U. R. Rapp 1989. Tyrosine kinase oncogenes abrogate interleukin-3 dependence of murine myeloid cells through signaling pathways involving c-myc: conditional regulation of c-myc transcription by temperature-sensitive v-abl. Mol. Cell. Biol. 9: 5685–5695.
  • Deb, S., C. T. Jackson, M. A. Subler, and D. W. Martin 1992. Modulation of cellular and viral promoters by mutant human p53 proteins found in tumor cells. J. Virol. 66: 6164–6170.
  • Dittmer, D., S. Pati, G. Zambetti, S. Chu, A. K. Teresky, M. Moore, C. Finlay, and A. J. Levine 1994. Gain-of-function mutations in p53. Nat. Genet. 4: 42–46.
  • Duyao, M. P., D. J. Kessler, D. B. Spicer, C. Bartholomew, J. L. Cleveland, M. Siekevitz, and G. E. Sonenshein 1992. Transactivation of the c-myc promoter by human T cell leukemia virus type 1 tax is mediated by NFκB. J. Biol. Chem. 267: 16288–16291.
  • el-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.
  • Fontoura, B. M., E. A. Sorokina, E. David, and R. B. Carrol 1992. p53 is covalently linked to 5.8S rRNA. Mol. Cell. Biol. 12: 5145–5151.
  • Ginsberg, D., F. Mechta, M. Yaniv, and M. Oren 1991. Wild-type p53 can down-modulate the activity of various promoters. Proc. Natl. Acad. Sci. USA 88: 9979–9983.
  • Gu, W., X.-L. Shi, and R. G. Roeder 1997. Synergistic activation of transcription by CBP and p53. Nature 387: 819–823.
  • Gualberto, A., M. L. Hixon, T. S. Finco, N. D. Perkins, G. J. Nabel, Baldwin A. S., Jr. 1995. A proliferative p53-responsive element mediates tumor necrosis factor alpha induction of the human immunodeficiency virus type 1 long terminal repeat. Mol. Cell. Biol. 15: 3450–3459.
  • Harvey, D., and A. J. Levine 1991. p53 alteration is a common event in the spontaneous immortalization of primary BALB/C murine fibroblasts. Genes Dev. 5: 2375–2385.
  • Hinds, P. W., C. A. Finlay, R. S. Quartin, S. J. Baker, E. R. Fearon, B. Vogelstein, and A. J. Levine 1990. Mutant cDNAs from human colorectal carcinomas can cooperate with ras in transformation of primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Differ. 1: 571–580.
  • Hsiao, M., J. Low, E. Dorn, D. Ku, P. Pattengale, J. Yeargin, and M. Haas 1994. Gain-of-function mutations of the p53 gene induce lymphohematopoietic metastatic potential and tissue invasiveness. Am. J. Pathol. 145: 702–714.
  • Jeffrey, P. D., S. Gorina, and N. P. Pavletich 1995. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267: 1498–1502.
  • Jones, K. A., and B. M. Peterlin 1994. Control of RNA initiation and elongation at the HIV-1 promoter. Annu. Rev. Biochem. 63: 717–743.
  • Kastan, M. B., Q. Zhan, W. S. el-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, Fornace A. J., Jr. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587–597.
  • Lill, N. L., S. R. Grossman, D. Ginsberg, J. DeCaprio, and D. M. Livingston 1997. Binding and modulation of p53 by p300/CBP coactivators. Nature 387: 823–827.
  • Lin, J., J. Chen, B. Elenbaas, and A. J. Levine 1994. Several hydrophobic amino acids in the p53 amino-terminal domain are required for the transcriptional activation, binding to mdm-2 and the adenovirus 5E1B 55-kD protein. Genes Dev. 8: 1235–1246.
  • Lin, J., A. K. Teresky, and A. J. Levine 1995. Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain-of-function phenotypes of human p53 mutants. Oncogene 10: 2387–2390.
  • Lu, H., and A. J. Levine 1995. TAFII31 protein is a transcriptional coactivator of the p53 protein. Proc. Natl. Acad. Sci. USA 92: 5154–5158.
  • Ludes-Meyer, J., M. Subler, C. Shivakumar, R. Munoz, P. Jiang, J. Bigger, D. Brown, S. P. Deb, and S. Deb 1996. Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol. Cell. Biol. 16: 6009–6019.
  • Masuda, H., C. Miller, H. P. Koeffler, H. Battifora, and M. J. Cline 1987. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc. Natl. Acad. Sci. USA 84: 7716–7719.
  • Meek, D. W., S. Simon, U. Kikkawa, and W. Eckhart 1990. The p53 tumor suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J. 9: 3253–3260.
  • Miyashita, T., and J. C. Reed 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299.
  • Moll, U. M., A. G. Ostermeyer, R. Haladay, B. Winkfield, M. Frazier, and G. P. Zambetti 1996. Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol. Cell. Biol. 16: 1126–1137.
  • Mosner, J., T. Mummenbrauer, C. Bauer, G. Sczakiel, F. Grosse, and W. Deppert 1995. Negative feedback regulation of wild-type p53 biosynthesis. EMBO J. 14: 4442–4449.
  • Nepveu, A., and K. B. Marcu 1986. Intragenic pausing and anti-sense transcription within the murine c-myc locus. EMBO J. 5: 2859–2865.
  • Oberosler, P., P. Hloch, U. Ramsperger, and H. Stahl 1993. p53-catalyzed annealing of complementary single-stranded nucleic acids. EMBO J. 12: 2389–2396.
  • Pellagata, N. S., J.-F. Cajot, and E. J. Standbridge 1995. The basic carboxy-terminal domain of human p53 is dispensable for both transcriptional regulation and inhibition of tumor cell growth. Oncogene 11: 337–349.
  • Santhanam, U., A. Rat, and P. B. Sehgal 1991. Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. Proc. Natl. Acad. Sci. USA 88: 7605–7609.
  • Selivanova, G., V. Iotsova, E. Kiseleva, M. Strom, G. Bakalkin, R. C. Grafstrom, and K. G. Wiman 1996. The single-stranded DNA end binding site of p53 coincides with the C-terminal regulatory region. Nucleic Acids Res. 24: 3560–3567.
  • Seto, E., A. Usheva, G. P. Zambetti, J. Momand, N. Horikoshi, R. Weinmann, A. J. Levine, and T. Shenk 1992. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 89: 12028–12032.
  • Shaulian, E., A. Zauberman, D. Ginsberg, and M. Oren 1992. Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol. Cell. Biol. 12: 5581–5592.
  • Shaulian, E., A. Zauberman, J. Milner, E. A. Davies, and M. Oren 1993. Tight DNA binding and oligomerization are dispensable for the ability of p53 to transactivate target genes and suppress transformation. EMBO J. 12: 2789–2797.
  • Shaulsky, G., N. Goldfinger, A. Ben-Ze’ev, and V. Rotter 1990. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol. Cell. Biol. 10: 6565–6577.
  • Shaulsky, G., N. Goldfinger, and V. Rotter 1991. Alterations in tumor development in vivo mediated by expression of wild-type or mutant p53 proteins. Cancer Res. 51: 5232–5237.
  • Slingerland, J., J. Jenkins, and S. Benchimol 1993. The transforming and suppressor functions of p53 alleles: effects of mutations that disrupt phosphorylation, oligomerization and nuclear translocation. EMBO J. 12: 1029–1037.
  • Spencer, C. A., and M. Groudine 1991. Control of c-myc regulation in normal and neoplastic cells. Adv. Cancer Res. 56: 1–48.
  • Subler, M. A., D. W. Martin, and S. Deb 1992. Inhibition of viral and cellular promoters by human wild-type p53. J. Virol. 66: 4757–4762.
  • Sun, Y., K. Nakamura, E. Wendel, and N. Colburn 1993. Progression toward tumor cell phenotype is enhanced by overexpression of a mutant p53 tumor suppressor gene isolated from nasopharyngeal carcinoma. Proc. Natl. Acad. Sci. USA 90: 2827–2831.
  • Thut, C. J., J.-L. Chen, R. Klemm, and R. Tjian 1995. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267: 100–103.
  • Wolf, D., N. Harris, and V. Rotter 1984. Reconstitution of p53 expression in a nonproducer Ab-MuLV transformed cell line by transfection of a functional p53 gene. Cell 38: 119–126.
  • Wright, S., and J. M. Bishop 1989. DNA sequences that mediate attenuation of transcription from the mouse protooncogene myc. Proc. Natl. Acad. Sci. USA 86: 505–509.
  • Wu, X., J. H. Bayle, D. Olson, and A. J. Levine 1993. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7: 1126–1132.
  • Wu, L., J. H. Bayle, B. Elenbaas, N. P. Pavletich, and A. J. Levine 1995. Alternatively spliced forms in the carboxy-terminal domain of the p53 protein regulate its ability to promote annealing of complementary single strands of nucleic acids. Mol. Cell. Biol. 15: 497–504.
  • Xiao, H., A. Pearson, B. Coulombe, R. Truant, S. Zhang, J. L. Regier, S. J. Triezenberg, D. Reinberg, O. Flores, C. J. Ingles, and J. Greenblatt 1994. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol. 14: 7013–7024.
  • Zambetti, G. P., D. Olson, M. A. Labow, and A. J. Levine 1992. A mutant p53 protein is required for maintenance of the transformed phenotype in cells transformed with p53 plus ras cDNAs. Proc. Natl. Acad. Sci. USA 89: 3952–3956.
  • Zambetti, G. P., J. Bargonetti, K. Walker, C. Prives, and A. J. Levine 1992. Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dev. 6: 1143–1152.
  • Zambetti, G. P., and A. J. Levine 1993. A comparison of the biological activities of wild-type and mutant p53. FASEB J. 8: 855–865.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.