0
Views
8
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Xenopus TFIIIA Gene Transcription Is Dependent on cis-Element Positioning and Chromatin Structure

&
Pages 3811-3818 | Received 27 Oct 1997, Accepted 13 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Armstrong, J. A., and B. M. Emerson 1996. NF-E2 disrupts chromatin structure at human β-globin locus control region hypersensitive site 2 in vitro. Mol. Cell. Biol. 16: 5634–5644.
  • Carthew, R. W., L. A. Chodosh, and P. A. Sharp 1987. The major late transcription factor binds to and activates the mouse metallothionein I promoter. Genes Dev. 1: 973–980.
  • Chodosh, L. A., R. W. Carthew, J. W. Morgan, G. R. Crabtree, and P. A. Sharp 1987. An adenovirus major late transcription factor activates the γ-fibrinogen promoter. Science 238: 684–688.
  • Engelke, D. R., S. Y. Ng, B. S. Shastry, and R. G. Roeder 1980. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell 19: 717–728.
  • Fedor, M. J., L. F. Lue, and R. D. Kornberg 1988. Statistical positioning of nucleosomes by specific protein binding to an upstream activating sequence in yeast. J. Mol. Biol. 204: 109–127.
  • Ginsberg, A. M., B. O. King, and R. G. Roeder 1984. Xenopus 5S gene transcription factor, TFIIIA: characterization of a cDNA clone and measurement of RNA levels throughout development. Cell 39: 479–489.
  • Gregor, P. D., M. Sawadogo, and R. G. Roeder 1990. The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes Dev. 4: 1730–1740.
  • Hall, R. K., and W. L. Taylor 1989. Transcription factor IIIA gene expression in Xenopus oocytes utilizes a transcription factor similar to the major late transcription factor. Mol. Cell. Biol. 9: 5003–5011.
  • Honda, B. M., and R. G. Roeder 1980. Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation. Cell 22: 119–126.
  • Kaulen, H., P. Pognonec, P. D. Gregor, and R. G. Roeder 1991. The Xenopus B1 factor is closely related to the mammalian activator USF and is implicated in the developmental regulation of TFIIIA gene expression. Mol. Cell. Biol. 11: 412–424.
  • Landsberger, N., and A. P. Wolffe 1995. Role of chromatin and Xenopus laevis heat shock transcription factor in the regulation of transcription from the X. laevis hsp70 promoter in vivo. Mol. Cell. Biol. 15: 6013–6024.
  • Lu, Q., L. L. Wallrath, and S. C. R. Elgin 1994. Nucleosome positioning and gene regulation. J. Cell. Biochem. 55: 83–92.
  • Lu, Q., L. L. Wallrath, and S. C. R. Elgin 1995. The role of a positioned nucleosome at the Drosophila hsp26 promoter. EMBO J. 14: 4738–4746.
  • Marin, M., A. Karis, P. Visser, F. Grosveld, and S. Philipsen 1997. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell 89: 619–628.
  • Matsumoto, Y., and L. J. Korn 1988. Upstream sequences required for transcription of the TFIIIA gene in Xenopus oocytes. Nucleic Acids Res. 16: 3801–3813.
  • Maxam, A., and W. Gilbert 1980. Sequencing end-labeled DNA with base specific chemical cleavages. Methods Enzymol. 65: 499–560.
  • McPherson, C. E., E. Shim, D. S. Friedman, and K. S. Zaret 1993. An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell 75: 387–398.
  • Miller, J., A. D. McLachlan, and A. Klug 1985. Repetitive zinc-binding domains in the protein transcription factor TFIIIA from Xenopus oocytes. EMBO J. 4: 1609–1614.
  • Mueller, P. R., S. J. Salser, and B. Wold 1988. Constitutive and metal-inducible protein:DNA interactions at the mouse metallothionein I promoter examined by in vivo and in vitro footprinting. Genes Dev. 2: 412–427.
  • Pazin, M., R. T. Kamakaka, and J. T. Kadonaga 1994. ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266: 2007–2011.
  • Pazin, M. J., P. L. Sheridan, K. Cannon, Z. Cao, J. G. Keck, J. T. Kadonaga, and K. A. Jones 1996. NF-κB-mediated chromatin reconfiguration and transcriptional activation of the HIV-1 enhancer in vitro. Genes Dev. 10: 37–49.
  • Pazin, M. J., P. Bhargava, E. P. Geiduschek, and J. T. Kadonaga 1997. Nucleosome mobility and the maintenance of nucleosome positioning. Science 276: 809–812.
  • Pelham, H. R. B., and D. D. Brown 1980. A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc. Natl. Acad. Sci. USA 77: 4170–4174.
  • Penberthy, W. T., D. Griffin, R. K. Hall, and W. L. Taylor. Unpublished data.
  • Peritz, L. N., E. J. Fodor, D. W. Silversides, P. A. Cattini, J. D. Baxter, and N. L. Eberhardt 1988. The human growth hormone gene contains both positive and negative control elements. J. Biol. Chem. 263: 5005–5007.
  • Perlman, T., and O. Wrange 1991. Inhibition of chromatin assembly in Xenopus oocytes correlates with the derepression of the mouse mammary tumor virus promoter. Mol. Cell. Biol. 11: 5259–5265.
  • Pfaff, S. L., R. K. Hall, G. C. Hart, and W. L. Taylor 1991. Regulation of the Xenopus laevis transcription factor IIIA gene during oogenesis and early embryogenesis: negative elements repress the O-TFIIIA promoter in embryonic cells. Dev. Biol. 145: 241–254.
  • Pfaff, S. L., and W. L. Taylor. Unpublished data.
  • Pondel, M. D., S. Murphy, L. Pearson, C. Craddock, and N. J. Proudfoot 1995. Sp1 functions in a chromatin dependent manner to augment human α-globin promoter activity. Proc. Natl. Acad. Sci. USA 92: 7237–7241.
  • Roth, S. Y., M. Shimizu, L. Johnson, M. Grunstein, and R. T. Simpson 1992. Stable nucleosome positioning and complete repression by the yeast α2 repressor are disrupted by amino-terminal mutations in histone H4. Genes Dev. 6: 411–425.
  • Schild, C., F. Claret, W. Wahli, and A. P. Wolffe 1993. A nucleosome-dependent static loop potentiates estrogen-regulated transcription from the Xenopus vitellogenin B1 promoter in vitro. EMBO J. 12: 423–433.
  • Scotto, K. W., H. Kaulen, and R. G. Roeder 1989. Positive and negative regulation of the gene for transcription factor IIIA in Xenopus laevis oocytes. Genes Dev. 3: 651–662.
  • Seal, S. N., D. L. Davis, and J. B. E. Burch 1991. Mutational studies reveal a complex set of positive and negative control elements within the chicken vitellogenin II promoter. Mol. Cell. Biol. 11: 2704–2717.
  • Segall, J., T. Matsui, and R. G. Roeder 1980. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III. J. Biol. Chem. 255: 11986–11991.
  • Shimizu, M., S. Y. Roth, C. Szent-Gyorgi, and R. T. Simpson 1991. Nucleosomes are positioned with base pair precision adjacent to the α2 operator in Saccharomyces cerevisiae. EMBO J. 10: 3033–3041.
  • Taylor, W., I. J. Jackson, N. Siegel, A. Kumar, and D. D. Brown 1986. The developmental expression of the gene for TFIIIA in Xenopus laevis. Nucleic Acids Res. 14: 6185–6195.
  • Thomas, G. H., and S. C. R. Elgin 1988. Protein/DNA architecture of the DNase I hypersensitive region of the Drosophila hsp26 promoter. EMBO J. 7: 2191–2201.
  • Tsukiyama, T., P. B. Becker, and C. Wu 1994. ATP-dependent nucleosome disruption at a heat shock promoter mediated by binding of GAGA transcription factor. Nature 367: 525–532.
  • Tso, J. Y., D. J. Van Den Berg, and L. J. Korn 1986. Structure of the gene for Xenopus transcription factor IIIA. Nucleic Acids Res. 14: 2187–2200.
  • Wall, G., P. D. Varga-Weisz, R. L. Sandaltzopoulos, and P. B. Becker 1995. Chromatin remodeling by GAGA factor and heat shock factor at the hypersensitive Drosophila hsp26 promoter in vitro. EMBO J. 14: 1727–1736.
  • Wolffe, A. P. 1992. Chromatin structure and function. Academic Press, San Diego, Calif.
  • Workman, J. L., R. G. Roeder, and R. E. Kingston 1990. An upstream transcription factor, USF (MLTF), facilitates the formation of preinitiation complexes during in vitro chromatin assembly. EMBO J. 9: 1299–1308.
  • Yenidunya, A., C. Davey, D. Clark, G. Felsenfeld, and J. Allan 1994. Nucleosome positioning on chicken and human globin gene promoters in vitro. J. Mol. Biol. 237: 401–414.
  • Zwartkruis, F., T. Hoeijmakers, J. Deschamps, and F. Meijlink 1991. Characterization of the murine Hox-2.3 promoter: involvement of the transcription factor USF (MLTF). Mech. Dev. 33: 179–190.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.