82
Views
195
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Spa2p Interacts with Cell Polarity Proteins and Signaling Components Involved in Yeast Cell Morphogenesis

, , , &
Pages 4053-4069 | Received 04 Nov 1997, Accepted 07 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Adams, A., and J. Pringle 1984. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J. Cell Biol. 98: 934–945.
  • Amberg, D. C., J. E. Zahner, J. W. Mulholland, J. R. Pringle, and D. Botstein 1997. Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites. Mol. Biol. Cell 8: 729–753.
  • Arkowitz, R. A., and N. Lowe 1997. A small conserved domain in the yeast Spa2p is necessary and sufficient for its polarized localization. J. Cell Biol. 138: 17–36.
  • Ayscough, K. R., J. Stryker, N. Pokala, M. Sanders, P. Crews, and D. G. Drubin 1997. High rate of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137: 399–416.
  • Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and C. Cullin 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21: 3329–3330.
  • Bedinger, P. A., K. J. Hardeman, and C. A. Loukides 1994. Traveling in style: the cell biology of pollen. Trends Cell Biol. 4: 132–138.
  • Bender, A., and J. R. Pringle 1991. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 1295–1305.
  • Brewster, J. L., T. D. Valoir, N. D. Dwyer, E. Winter, and M. C. Gustin 1993. An osmosensing signal transduction pathway in yeast. Science 259: 1760–1763.
  • Buehrer, B. M., and B. Errede 1997. Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae. Mol. Cell. Biol. 17: 6517–6525.
  • Burns, N., B. Grimwade, P. B. Ross-Macdonald, E.-Y. Choi, K. Finberg, G. S. Roeder, and M. Snyder 1994. Large-scale characterization of gene expression, protein localization and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8: 1087–1105.
  • Canter, C. R., and P. R. Schimmel 1980. Biophysical chemistry, part II. Techniques for the study of biological structure and function 591–641W. H. Freeman and Company, San Francisco, Calif.
  • Chant, J., and J. R. Pringle 1995. Patterns of bud site selection in the yeast Saccharomyces cerevisiae. J. Cell Biol. 129: 751–765.
  • Chen, D.-C., B.-C. Yang, and T.-T. Kuo 1992. One step-transformation of yeast in stationary phase. Curr. Genet. 21: 83–84.
  • Chenevert, J., N. Valtz, and I. Herskowitz 1994. Identification of genes required for normal pheromone-induced cell polarization in Saccharomyces cerevisiae. Genetics 136: 1287–1297.
  • Choi, K.-Y., B. Satterberg, D. Lyons, and E. A. Elion 1994. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78: 499–512.
  • Costigan, C., S. Gehrung, and M. Snyder 1992. A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth. Mol. Cell. Biol. 12: 1162–1178.
  • Costigan, C., D. Kolodrubetz, and M. Snyder 1994. NHP6A and NHP6B, which encode HMG1-like proteins, function downstream in the yeast SLT2 MAPK pathway. Mol. Cell. Biol. 14: 2391–2403.
  • Costigan, C., and M. Snyder. Cell polarity in the budding yeast, Saccharomyces cerevisiae. Adv. Mol. Cell Biol., in press.
  • Drubin, D. G., H. D. Jones, and K. F. Wertman 1993. Actin structure and function: roles in mitochondrial organization and morphogenesis in budding yeast and identification of the phalloidin-binding site. Mol. Biol. Cell 4: 1277–1294.
  • Drubin, D. G., and W. J. Nelson 1996. Origins of cell polarity. Cell 84: 335–344.
  • Eisen, J. S. 1994. Development of motoneuronal phenotype. Annu. Rev. Neurol. 17: 1–30.
  • Elion, E. A., P. L. Grisafi, and G. R. Fink 1990. FUS3 encodes a cdc2+/CDC28-related kinase required for the transition from mitosis into conjugation. Cell 60: 649–664.
  • Elion, E. A., B. Satterberg, and J. E. Kranz 1993. FUS3 phosphorylates multiple components of the mating signaling transduction cascade: evidence for STE12 and FAR1. Mol. Biol. Cell 4: 495–510.
  • Elledge, S. J. Personal communication.
  • Erdman, S., L. Lin, M. Malczynski, and M. Snyder 1998. Pheromone-regulated genes required for yeast mating differentiation. J. Cell Biol. 140: 461–483.
  • Errede, B., R. M. Cade, B. M. Yasar, Y. Kamada, D. E. Levin, K. Irie, and K. Matsumoto 1995. Dynamics and organization of MAP kinase signal pathways. Mol. Reprod. Dev. 42: 477–485.
  • Errede, B., A. Gartner, Z. Zhou, K. Nasmyth, and G. Ammerer 1993. MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro. Nature 362: 261–264.
  • Evangelista, M., K. Blundell, M. S. Longtine, C. J. Chow, N. Adames, J. R. Pringle, M. Peter, and C. Boone 1997. Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276: 118–122.
  • Fields, S., and O.-K. Song 1989. A novel genetic system to detect protein-protein interactions. Nature 340: 245–246.
  • Flescher, E. G., K. Madden, and M. Snyder 1993. Components required for cytokinesis are important for bud site selection in yeast. J. Cell Biol. 122: 373–386.
  • Freifelder, D. 1960. Bud position in Saccharomyces cerevisiae. J. Bacteriol. 124: 511–523.
  • Gartner, A., K. Nasmyth, and G. Ammerer 1992. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev. 6: 1280–1292.
  • Gehrung, S., and M. Snyder 1990. The SPA2 gene of Saccharomyces cerevisiae is important for pheromone-induced morphogenesis and efficient mating. J. Cell Biol. 111: 1451–1464.
  • Gimeno, C. J., P. O. Ljungdahl, C. A. Styles, and G. R. Fink 1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68: 1077–1090.
  • Golemis, E. A., and R. Brent 1992. Fused protein domains inhibit DNA binding by LexA. Mol. Cell. Biol. 12: 3006–3014.
  • Hall, J. P., V. Cherkasova, E. Elion, M. C. Guitin, and E. Winter 1996. The osmoregulatory pathway represses mating pathway activity in Saccharomyces cerevisiae: isolation of a FUS3 mutant that is insensitive to the repression mechanism. Mol. Cell. Biol. 16: 6715–6723.
  • Harlow, E., and D. Lane 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Herskowitz, I. 1995. MAP kinase pathways in yeast: for mating and more. Cell 80: 187–197.
  • Hicks, J. B., J. N. Strathern, and I. Herskowitz 1977. Interconversion of yeast mating types. III. Action of the homothallism (HO) gene in cells homozygous for the mating type locus. Genetics 85: 395–405.
  • Irie, K., M. Takase, K. Lee, D. Levin, H. Araki, K. Matsumoto, and Y. Oshima 1993. MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol. Cell. Biol. 13: 3076–3083.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.
  • Johnson, D. I., and J. R. Pringle 1990. Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J. Cell Biol. 111: 143–152.
  • Kamada, Y., U. S. Jung, J. Piotrowski, and D. E. Levin 1995. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev. 9: 1559–1571.
  • Kilmartin, J. V., and A. E. M. Adams 1984. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98: 922–933.
  • Kilmartin, J. V., S. L. Dyos, D. Kershaw, and J. T. Finch 1993. A spacer protein in the Saccharomyces cerevisiae spindle pole body whose transcript is cell cycle regulated. J. Cell Biol. 123: 1175–1184.
  • Leberer, E., D. Dignard, D. Harcus, D. Y. Thomas, and M. Whiteway 1992. The protein kinase homologue STE20p is required to link the yeast pheromone response G-protein βγ subunits to downstream signalling components. EMBO J. 11: 4815–4824.
  • Lee, K., and D. Levin 1992. Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog. Mol. Cell. Biol. 12: 172–182.
  • Levin, D., and B. Errede 1993. A multitude of MAP kinase activation pathways. J. NIH Res. 5: 49–52.
  • Levin, D. E., and B. Errede 1995. The proliferation of MAP kinase signaling pathways in yeast. Curr. Opin. Cell Biol. 7: 197–202.
  • Lew, D. J., and S. I. Reed 1993. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol. 120: 1305–1320.
  • Liu, H., C. A. Styles, and G. R. Fink 1993. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262: 1741–1744.
  • Madden, K., Y.-J. Sheu, K. Baetz, B. Andrews, and M. Snyder 1997. SBF cell cycle regulator as a target of the yeast SLT2 MAP kinase pathway. Science 275: 1781–1784.
  • Madden, K., and M. Snyder 1992. Specification of sites of polarized growth in Saccharomyces cerevisiae and the influence of external factors on site selection. Mol. Biol. Cell 3: 1025–1035.
  • Madhani, H. D., C. A. Styles, and G. R. Fink 1997. MAP kinases with distinct inhibitory function impart signaling specificity during yeast differentiation. Cell 91: 673–684.
  • Marshall, C. J. 1994. MAP kinase kinase kinase, MAP kinase kinase, and MAP kinase. Curr. Opin. Genet. Dev. 4: 82–89.
  • Mazzoni, C., P. Zarzov, A. Rambourg, and C. Mann 1993. The SLT2 (MPK1) MAP kinase homolog is involved in polarized cell growth in Saccharomyces cerevisiae. J. Cell Biol. 123: 1821–1833.
  • Meluh, P. B., and M. D. Rose 1990. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60: 1029–1941.
  • Mirzayan, C., C. Copeland, and M. Snyder 1992. The NUF1 gene encodes a coiled-coil related protein that is a potential component of the yeast nucleoskeleton. J. Cell Biol. 116: 1319–1332.
  • Mooseker, M. S. 1985. Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu. Rev. Cell Biol. 1: 209–241.
  • Mosch, H.-U., and G. R. Fink 1997. Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145: 671–684.
  • Mulholland, J., D. Preuss, A. Moon, A. Wong, D. Drubin, and D. Botstein 1994. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol. 125: 381–391.
  • Neiman, A. M., and I. Herskowitz 1994. Reconstitution of a yeast protein kinase cascade in vitro: activation of the yeast MEK homologue STE7 by STE11. Proc. Natl. Acad. Sci. USA 91: 3398–3402.
  • Novick, P., and D. Botstein 1985. Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40: 405–416.
  • Ohya, Y., S. Miyamoto, Y. Ohsumi, and Y. Anraku 1986. Calcium-sensitive cls4 mutant of Saccharomyces cerevisiae with a defect in bud formation. J. Bacteriol. 165: 28–33.
  • Page, B. D., L. L. Satterwhite, M. D. Rose, and M. Snyder 1994. Localization of the KAR3 kinesin heavy chain-like protein requires the CIK1 interacting protein. J. Cell Biol. 124: 507–519.
  • Page, B. D., and M. Snyder 1992. CIK1: a developmentally regulated spindle pole body-associated protein important for microtubule functions in Saccharomyces cerevisiae. Genes Dev. 6: 1414–1429.
  • Peter, M., A. M. Neiman, H.-O. Park, M. van Lohuizen, and I. Herskowitz 1996. Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO. 15: 7046–7059.
  • Peterson, J., Y. Zheng, L. Bender, A. Myers, R. Cerione, and A. Bender 1994. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast. J. Cell Biol. 127: 1395–1406.
  • Posas, F., and H. Saito 1997. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276: 1702–1705.
  • Pringle, J., E. Bi, H. Harkins, J. Zahner, C. Devirgilio, J. Chant, K. Corado, and H. Fares 1995. Establishment of cell polarity in yeast. Cold Spring Harbor Symp. Quant. Biol. 60: 729–744.
  • Printen, J. A., Sprague, G. F.Jr. 1994. Protein-protein interactions in the yeast pheromone response pathway: Ste5p interacts with all members of the MAP kinase cascade. Genetics 138: 609–619.
  • Read, E. B., H. H. Okamura, and D. G. Drubin 1992. Actin- and tubulin-dependent functions during Saccharomyces cerevisiae mating projection formation. Mol. Biol. Cell 3: 429–444.
  • Roberts, R., and G. R. Fink 1994. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 8: 2974–2985.
  • Roemer, T., K. Madden, J. Chang, and M. Snyder 1996. Selection of axial growth sites in yeast requires Axl2p, a novel plasma membrane glycoprotein. Genes Dev. 10: 777–793.
  • Roemer, T., L. Vallier, Y.-J. Sheu, and M. Snyder 1998. The Spa2-related protein, Sph1, is important for polarized growth in yeast. J. Cell Sci. 111: 479–494.
  • Roemer, T., L. Vallier, and M. Snyder 1996. Selection of polarized growth sites in yeast. Trends Cell Biol. 6: 434–441.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Santos, B., and M. Snyder 1997. Targeting of chitin synthase 3 to polarized growth sites in yeast requires Chs5p and Myo2p. J. Cell Biol. 136: 95–110.
  • Scherr, G. H., and R. H. Weaver 1953. The dimorphism phenomenon in yeasts. Bacteriol. Rev. 17: 51–92.
  • Schneider, B. L., W. Seufert, B. Steiner, Q. H. Yang, and A. B. Futcher 1995. Use of PCR epitope tagging for protein tagging in Saccharomyces cerevisiae. Yeast 11: 1265–1274.
  • Sherman, F., G. Fink, and J. Hicks 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sikorski, R., and P. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Sloat, B., and J. Pringle 1978. A mutant of yeast defective in cellular morphogenesis. Science 200: 1171–1173.
  • Snyder, M. 1989. The SPA2 protein of yeast localizes to sites of cell growth. J. Cell Biol. 108: 1419–1429.
  • Snyder, M., S. Gehrung, and B. D. Page 1991. Studies concerning the temporal and genetic control of cell polarity in Saccharomyces cerevisiae. J. Cell Biol. 114: 515–532.
  • Sobel, S., S. McPherson, and M. Snyder. Unpublished data.
  • Sprague, G. F., and J. Thorner 1992. Pheromone response and signal transduction during the mating process of Saccharomyces cerevisiae The molecular and cellular biology of the yeast Saccharomyces. In: Jones, E. W., J. R. Pringle, and J. R. Broach657–744Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Stevenson, B. J., N. Rhodes, B. Errede, and G. F. Sprague 1992. Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of G protein. Genes Dev. 6: 1293–1304.
  • Torres, L., H. Martin, M. I. Garcia-Saez, J. Arroyo, M. Molina, M. Sanchez, and C. Nombela 1991. A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants. Mol. Microbiol. 5: 2845–2854.
  • Treisman, R. 1996. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8: 205–215.
  • Valtz, N., and I. Herskowitz 1996. Pea2 protein of yeast is localized to sites of polarized growth and is required for efficient mating and bipolar budding. J. Cell Biol. 135: 725–739.
  • Valtz, N., M. Peter, and I. Herskowitz 1995. FAR1 is required for oriented polarization of yeast cells in response to mating pheromones. J. Cell Biol. 131: 863–873.
  • Wertman, K. F., D. G. Drubin, and D. Botstein 1992. Systematic mutational analysis of the yeast ACT1 gene. Genetics 132: 337–350.
  • Xie, K., E. Lambie, and M. Snyder 1993. Nuclear dot antigens may specify transcriptional domains in the nucleus. Mol. Cell. Biol. 13: 6170–6179.
  • Yang, C. H., E. J. Lambie, and M. Snyder 1992. NuMA: an unusually large coiled-coil protein in the mammalian nucleus. J. Cell Biol. 116: 1303–1317.
  • Yang, S., K. R. Ayscough, and D. G. Drubin 1997. A role for the actin cytoskeleton of Saccharomyces cerevisiae in bipolar bud-site selection. J. Cell Biol. 136: 111–123.
  • Yorihuzi, T., and Y. Ohsumi 1994. Saccharomyces cerevisiae MATα mutant cells defective in pointed projection formation in response to α-factor at high concentrations. Yeast 10: 579–594.
  • Zahner, J. E., H. A. Harkins, and J. R. Pringle 1996. Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 1857–1870.
  • Zarzov, P., C. Mazzoni, and C. Mann 1996. The SLT2 (MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. EMBO. 15: 83–91.
  • Zhou, Z., A. Gartner, R. Cade, G. Ammerer, and B. Errede 1993. Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases. Mol. Cell. Biol. 13: 2069–2080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.