12
Views
22
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The C-Terminal Domain of Sin1 Interacts with the SWI-SNF Complex in Yeast

&
Pages 4157-4164 | Received 19 Dec 1997, Accepted 09 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Bernues, J., E. Querol, P. Martinez, A. Barrios, E. Espel, and J. Llobevas 1983. Detection by chemical cross-linking of the interaction between high mobility group protein 1 and histone oligomers in free solution. J. Biol. Chem. 258: 11020–11024.
  • Bianchi, M. E., L. Falciola, S. Ferrari, and D. M. J. Lilley 1992. The DNA binding site of HMG1 protein is composed of two similar segments (HMG boxes), both of which have counterparts in other eukaryotic regulatory proteins. EMBO J. 3: 1055–1063.
  • Bonne-Andrea, C., F. Harper, J. Sobczac, and A. M. de Recondo 1984. Rat liver HMG1: a physiological nucleosome assembly factor. EMBO J. 3: 1193–1199.
  • Bustin, M., D. A. Lehn, and D. Landsman 1990. Structural features of the HMG chromosomal proteins and their genes. Biochim. Biophys. Acta 1049: 231–243.
  • Cairns, B. R., N. L. Henry, and R. D. Kornberg 1996. TFG3/TF30/ANC1, a component of the yeast SWI/SNF complex that is similar to the leukemogenic proteins ENL and AF-9. Mol. Cell. Biol. 16: 3308–3316.
  • Cairns, B. R., R. S. Levinson, K. R. Yamamoto, and R. D. Kornberg 1996. Essential role of Swp73p in the function of yeast Swi/Snf complex. Genes Dev. 10: 2131–2144.
  • Clark-Adams, C. D., and F. Winston 1987. The SPT6 gene is essential for growth and is required for δ-mediated transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 679–686.
  • Clark-Adams, C. D., D. Norris, M. A. Osley, J. S. Fassler, and F. Winston 1988. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 2: 150–159.
  • Dombroski, A. J., W. A. Walter, and C. A. Gross 1993. Amino-terminal amino acids modulate sigma-factor DNA-binding activity. Genes Dev. 7: 2446–2455.
  • Gietz, D., A. St. Jean, R. A. Woods, and R. H. Schiestl 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20: 1425.
  • Grunstein, M. 1990. Histone function in transcription. Annu. Rev. Cell Biol. 6: 643–678.
  • Hirschhorn, J. N., S. A. Brown, C. D. Clark, and F. Winston 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6: 2288–2298.
  • Jonsen, M. D., J. M. Petersen, Q. P. Xu, and B. J. Graves 1996. Characterization of the cooperative function of inhibitory sequences in Ets-1. Mol. Cell. Biol. 16: 2065–2073.
  • Kruger, W., and I. Herskowitz 1991. A negative regulator of HO transcription, SIN1 (SPT2), is a nonspecific DNA-binding protein related to HMG1. Mol. Cell. Biol. 11: 4135–4146.
  • Kruger, W., C. L. Peterson, A. Sil, C. Coburn, G. Arents, E. N. Moudrianakis, and I. Herskowitz 1995. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 9: 2770–2779.
  • Laurent, B. C., and M. Carlson 1992. Yeast SNF2/SWI2, SNF5, and SNF6 proteins function coordinately with the gene-specific transcriptional activators GAL4 and Bicoid. Genes Dev. 6: 1707–1715.
  • Laurent, B. C., M. A. Treitel, and M. Carlson 1990. The SNF5 protein of Saccharomyces cerevisiae is a glutamine- and proline-rich transcriptional activator that affects expression of a broad spectrum of genes. Mol. Cell. Biol. 10: 5616–5625.
  • Lefevbre, L., and M. Smith 1993. Mutational and functional analysis of dominant SPT2 (SIN1) suppressor alleles in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 5393–5407.
  • Liberzon, A., S. Shpungin, H. Bangio, E. Yona, and D. J. Katcoff 1996. Association of yeast SAP1, a novel member of the AAA ATPase family of proteins with the chromatin protein SIN1. FEBS Lett. 388: 5–10.
  • Malone, E. A., J. S. Fassler, and F. Winston 1993. Molecular and genetic characterization of SPT4, a gene important for transcription initiation in Saccharomyces cerevisiae. Mol. Gen. Genet. 237: 449–459.
  • Moazed, D., A. Kistler, A. Axelrod, J. Rine, and A. D. Johnson 1997. Silent information regulatory protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc. Natl. Acad. Sci. USA 94: 2186–2191.
  • Nasmyth, K. 1993. Regulating the HO endonuclease in yeast. Curr. Opin. Genet. Dev. 3: 286–294.
  • Nasmyth, K., D. J. Stillman, and D. Kipling 1987. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell 48: 579–587.
  • Neigeborn, L., and M. Carlson 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108: 845–858.
  • Pérez-Martı́n, J., and V. de Lorenzo 1995. The amino-terminal domain of the prokaryotic enhancer-binding protein XylR is a specific intramolecular repressor. Proc. Natl. Acad. Sci. USA 92: 9392–9396.
  • Pérez-Martı́n, J., and A. D. Johnson 1998. Mutations in chromatin components suppress a defect of Gcn5 protein in Saccharomyces cerevisiae. Mol. Cell. Biol. 18: 1049–1054.
  • Peterson, C. L., and I. Herskowitz 1992. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68: 573–583.
  • Peterson, C. L., W. Kruger, and I. Herskowitz 1991. A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 64: 1135–1143.
  • Peterson, C. L., and J. W. Tamkun 1995. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20: 143–146.
  • Prelich, G., and F. Winston 1993. Mutations that suppress the deletion of an upstream activating sequence in yeast: involvement of a protein kinase and histone H3 in repressing transcription in vivo. Genetics 135: 665–676.
  • Roeder, G. S., C. Beard, M. Smith, and S. Keranen 1985. Isolation and characterization of the SPT2 gene, a negative regulator of Ty-controlled yeast gene expression. Mol. Cell. Biol. 5: 1543–1553.
  • Rose, M. D., F. Winston, and P. Hieter 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Russell, D. W., R. Jensen, M. J. Zoller, J. Burke, B. Errede, B. M. Smith, and I. Herskowitz 1986. Structure of the Saccharomyces cerevisiae HO gene and analysis of its upstream regulatory sequences. Mol. Cell. Biol. 6: 4281–4294.
  • Scherer, S., and R. W. Davis 1979. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc. Natl. Acad. Sci. USA 76: 4951–4955.
  • Schroter, H., and J. Bode 1982. The binding sites for large and small high mobility group (HMG) proteins: studies on HMG-nucleosome interactions in vitro. Eur. J. Biochem. 127: 429–436.
  • Sheflin, L. G., N. W. Fucile, and S. W. Spaulding 1993. The specific interactions of HMG1 and 2 with negatively supercoiled DNA are modulated by their acidic C-terminal domains and involve cysteine residues in their HMG 1/2 boxes. Biochemistry 32: 3238–3248.
  • Shpungin, S., A. Liberzon, H. Bangio, E. Yona, and D. J. Katcoff 1996. Association of yeast SIN1 with the tetratricopeptide repeats of CDC23. Proc. Natl. Acad. Sci. USA 93: 8274–8277.
  • Stern, M. 1985. Genes controlling the expression of the HO gene in yeast. Ph.D. thesis. University of California, San Francisco
  • Stern, M., R. Jensen, and I. Herskowitz 1984. Five SWI genes are required for expression of the HO gene in yeast. J. Mol. Biol. 178: 853–868.
  • Sternberg, P. W., J. M. Stern, I. Clark, and I. Herskowitz 1987. Activation of the yeast HO gene by release from multiple negative controls. Cell 48: 567–577.
  • Stillman, D. J., A. T. Bankier, A. Seddon, E. G. Groenhout, and K. Nasmyth 1988. Characterization of a transcription factor involved in mother cell specific transcription of the yeast HO gene. EMBO J. 7: 485–494.
  • Stros, M., J. Stokrova, and J. O. Thomas 1994. DNA looping by the HMG-box domains of HMG1 and modulation of DNA binding by the acidic C-terminal domain. Nucleic Acids Res. 22: 1044–1051.
  • Swanson, M. S., E. A. Malone, and F. Winston 1991. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell. Biol. 11: 3009–3019.
  • Treich, I., B. R. Cairns, T. Santos, E. Brewster, and M. Carlson 1995. SNF11, a new component of the yeast SNF-SWI complex that interacts with a conserved region of SNF2. Mol. Cell. Biol. 15: 4240–4248.
  • Wechser, M. A., M. P. Kladde, J. A. Alfieri, and C. L. Peterson 1997. Effects of Sin− versions of histone H4 on yeast chromatin structure and function. EMBO J. 16: 2086–2095.
  • Winston, F., D. T. Chaleff, B. Valent, and G. R. Fink 1984. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107: 179–197.
  • Winston, F., and M. Carlson 1992. Yeast SNF/SWI transcriptional activators and the SPT/SIN connection. Trends Genet. 8: 387–391.
  • Yona, E., H. Bangio, Y. Friedman, S. Shpungin, and D. J. Katcoff 1996. Characterization of a short unique sequence in the yeast HO gene promoter that regulates HO transcription in a SIN1 dependent manner. FEBS Lett. 382: 97–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.