37
Views
206
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Two Domains Unique to Osteoblast-Specific Transcription Factor Osf2/Cbfa1 Contribute to Its Transactivation Function and Its Inability To Heterodimerize with Cbfβ

, , , &
Pages 4197-4208 | Received 05 Feb 1998, Accepted 27 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Aronson, B. D., A. L. Fisher, K. Blechman, M. Caudy, and J. P. Gergen 1997. Groucho-dependent and -independent repression activities of Runt domain proteins. Mol. Cell. Biol. 17: 5581–5587.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl 1994. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y.
  • Bae, S. C., Y. Yamaguchi-Iwai, E. Ogawa, M. Maruyama, M. Inuzuka, H. Kagoshima, K. Shigesada, M. Satake, and Y. Ito 1993. Isolation of PEBP2αB cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1. Oncogene 8: 809–814.
  • Bae, S.-C., E. Ogawa, M. Maruyama, H. Oka, M. Satake, K. Shigesada, N. A. Jenkins, D. J. Gilbert, N. G. Copeland, and Y. Ito 1994. PEBP2αB/Mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol. Cell. Biol. 14: 3242–3252.
  • Bae, S. C., E. Takahasi, Y. W. Zhang, E. Ogawa, K. Shigesada, Y. Namba, M. Satake, and Y. Ito 1995. Cloning, mapping and expression of PEBP2αC, a third gene encoding the mammalian Runt domain. Gene 159: 245–248.
  • Coffman, J. A., C. V. Kirchhamer, M. G. Harrington, and E. H. Davidson 1996. SpRunt-1, a new member of the runt domain family of transcription factors, is a positive regulator of the aboral ectoderm-specific CyIIIA gene in sea urchin embryos. Dev. Biol. 174: 43–54.
  • Daga, A., C. A. Karlovich, K. Dumstrei, and U. Banerjee 1996. Patterning of cells in the Drosophila eye by Lozenge, which shares homologous domains with AML1. Genes Dev. 10: 1194–1205.
  • Dingwall, C., and R. A. Laskey 1991. Nuclear targeting sequences—a consensus. Trends Biochem. Sci. 16: 478–481.
  • Ducy, P., and G. Karsenty 1995. Two distinct osteoblast-specific cis-acting elements control expression of the mouse osteocalcin gene. Mol. Cell. Biol. 15: 1858–1869.
  • Ducy, P., R. Zhang, V. Geoffroy, A. L. Ridall, and G. Karsenty 1997. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89: 747–754.
  • Geoffroy, V., D. A. Corral, L. Zhou, B. Lee, and G. Karsenty 1998. Genomic organization, expression of the human CBFA1 gene, and evidence for an alternative splicing event affecting protein function. Mamm. Genome 9: 54–57.
  • Gerber, H.-P., K. Seipel, O. Georgiev, M. Hofferer, M. Hug, S. Rusconi, and W. Schaffner 1994. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263: 808–811.
  • Golling, G., L.-H. Li, M. Pepling, M. Stebbins, and J. P. Gergen 1996. Drosophila homologs of the proto-oncogene product PEBP2/CBFβ regulate the DNA-binding properties of Runt. Mol. Cell. Biol. 16: 932–942.
  • Han, K., and J. L. Manley 1993. Transcriptional repression by the Drosophila even-skipped protein: definition of a minimal repression domain. Genes Dev. 7: 491–503.
  • Han, K., and J. L. Manley 1993. Functional domains of the Drosophila Engrailed protein. EMBO J. 12: 2723–2733.
  • Ito, Y., and S. C. Bae 1997. The runt domain transcription factor, PEBP2/CBF, and its involvement in human leukemia Cell cycle regulators and chromosomal translocation. In: Yaniv, M., and J. Ghysdael108–132Birkhauser Verlag, Basel, Switzerland.
  • Jones, K. L. 1997. Smith’s recognizable patterns of human malformation. W. B. Saunders Company, Philadelphia, Pa.
  • Kagoshima, H., M. Satake, H. Miyoshi, M. Ohki, M. Pepling, J. P. Gergen, K. Shigesada, and Y. Ito 1993. The runt domain identifies a new family of heteromeric transcriptional regulators. Trends Genet. 9: 338–341.
  • Kagoshima, H., Y. Akamatsu, Y. Ito, and K. Shigesada 1996. Functional dissection of the α and β subunits of transcription factor PEBP2α and the redox susceptibility of its DNA-binding activity. J. Biol. Chem. 271: 33074–33082.
  • Kania, M. A., A. S. Bonner, J. B. Duffy, and J. P. Gergen 1990. The Drosophila segmentation gene runt encodes a novel regulatory protein that is also expressed in the developing nervous system. Genes Dev. 4: 1701–1713.
  • Komori, T., H. Yagi, S. Nomura, A. Yamaguchi, K. Sasaki, K. Deguchi, Y. Shimizu, R. T. Bronson, Y.-H. Gao, M. Inada, M. Sato, R. Okamoto, Y. Kitamura, S. Yoshiki, and T. Kishimoto 1997. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755–764.
  • Kanno, T., Y. Kanno, L.-F. Chen, E. Ogawa, W.-Y. Kim, and Y. Ito 1998. Intrinsic transcriptional activation-inhibition domains of the polymavirus enhancer binding protein 2/core binding factor α subunit revealed in the presence of the β subunit. Mol. Cell. Biol. 18: 2444–2454.
  • Kozak, M. 1987. An analysis of 5′-noncoding sequences of 699 vertebrate messenger RNAs. Nucleic Acids Res. 15: 8125–8148.
  • Kurokawa, M., T. Tanaka, K. Tanaka, N. Hirano, S. Ogawa, K. Mitani, Y. Yazaki, and H. Hirai 1996. A conserved cysteine residue in the runt homology domain of AML1 is required for the DNA-binding ability and the transforming activity on fibroblasts. J. Biol. Chem. 271: 16870–16876.
  • Lee, B., K. Thirunavukkarasu, L. Zhou, L. Pastore, A. Baldini, J. Hecht, V. Geoffroy, P. Ducy, and G. Karsenty 1997. Missense mutations abolishing DNA-binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat. Genet. 16: 307–310.
  • Lenny, N., S. Meyers, and S. W. Hiebert 1995. Functional domains of the t(8;21) fusion protein, AML-1/ETO. Oncogene 11: 1761–1769.
  • Lu, J., M. Maruyama, M. Satake, S.-C. Bae, E. Ogawa, H. Kagoshima, K. Shigesada, and Y. Ito 1995. Subcellular localization of the α and β subunits of the acute myeloid leukemia-linked transcription factor PEBP2/CBF. Mol. Cell. Biol. 15: 1651–1661.
  • Luo, X., and M. Sawadogo 1996. Functional domains of the transcription factor USF2: atypical nuclear localization signals and context-dependent transcriptional activation domains. Mol. Cell. Biol. 16: 1367–1375.
  • Meyers, S., J. R. Downing, and S. W. Hiebert 1993. Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol. Cell. Biol. 13: 6336–6345.
  • Mundlos, S., F. Otto, C. Mundlos, J. B. Mulliken, A. S. Aylsworth, S. Albright, D. Lindhout, W. G. Cole, W. Henn, J. H. M. Knoll, M. J. Owen, R. Mertelsmann, B. U. Zabel, and B. R. Olsen 1997. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89: 773–779.
  • Muragaki, Y., S. Mundlos, J. Upton, and B. R. Olsen 1996. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 272: 548–551.
  • Nakayama, H., Y. Liu, S. Stifani, and J. C. Cross 1997. Developmental restriction of Mash-2 expression in trophoblasts correlates with potential activation of the Notch-2 pathway. Dev. Genet. 21: 21–30.
  • Nigg, E. A. 1997. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386: 779–787.
  • Ogawa, E., M. Maruyama, H. Kagoshima, M. Inuzuka, J. Lu, M. Satake, K. Shigesada, and Y. Ito 1993. PEBP2/PEA2 represents a new family of transcription factors homologous to the products of the Drosophila runt and the human AML1 gene. Proc. Natl. Acad. Sci. USA 90: 6859–6863.
  • Ogawa, E., M. Inuzuka, M. Maruyama, M. Satake, M. Naito-Fujimoto, Y. Ito, and K. Shigesada 1993. Molecular cloning and characterization of PEBP2β, the heterodimeric partner of a novel Drosophila Runt-related DNA-binding protein, PEBP2α. Virology 194: 314–331.
  • Okuda, T., J. van Deursen, S. W. Hiebert, G. Grosveld, and J. R. Downing 1996. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330.
  • Otto, F., A. P. Thornell, T. Crompton, A. Denzel, K. C. Gilmour, I. R. Rosewell, W. H. Stamp, R. S. P. Beddington, S. Mundlos, B. R. Olsen, P. B. Selby, and M. J. Owen 1997. Cbfa1, a candidate gene for the cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 773–779.
  • Palaparti, A., A. Baratz, and S. Stifani 1997. The Groucho/transducin-like Enhancer of Split transcriptional repressors interact with the genetically defined amino-terminal silencing domain of histone H3. J. Biol. Chem. 272: 26604–26610.
  • Sadowski, I., and M. Ptashne 1989. A vector for expressing GAL4 (1-147) fusion in mammalian cells. Nucleic Acids Res. 17: 7539.
  • Sasaki, K., H. Yagi, R. T. Bronson, K. Tominaga, T. Matsunashi, K. Deguchi, Y. Tani, T. Kishimoto, and T. Komori 1996. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor β. Proc. Natl. Acad. Sci. USA 93: 12359–12363.
  • Sauer, F., S. K. Hansen, and R. Tjian 1995. Multiple TAFIIs directing synergistic activation of transcription. Science 270: 1783–1788.
  • Schreiber, E., P. Matthias, M. Muller, and W. Schaffner 1989. Rapid detection of octamer binding proteins with “mini-extracts” prepared from small number of cells. Nucleic Acids Res. 17: 6419.
  • Selby, P. B., and P. R. Selby 1978. Gamma-ray-induced dominant mutations that cause skeletal abnormalities in mice. II. Description of proved mutations. Mutat. Res. 51: 199–236.
  • Sillence, D. O., H. E. Ritchie, and P. B. Selby 1987. Animal model: skeletal anomalies in mice with cleidocranial dysplasia. Am. J. Med. Genet. 27: 75–85.
  • Speck, N. A., and T. Stacy 1995. A new transcription factor family associated with human leukemias. Crit. Rev. Eukaryot. Gene Expr. 5: 337–364.
  • Stifani, S., C. M. Blaumueller, N. J. Redhead, R. E. Hill, and S. Artavanis-Tsakonas 1992. Human homologs of a Drosophila Enhancer of Split gene product define a novel family of nuclear proteins. Nat. Genet. 2: 119–126.
  • Van Dyke, M. W., M. Sirito, and M. Sawadogo 1992. Single-step purification of bacterially expressed polypeptides containing an oligo-histidine domain. Gene 111: 99–104.
  • Wang, Q., T. Stacy, M. Binder, M. Marin-Padilla, A. H. Sharpe, and N. A. Speck 1996. Disruption of the cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. USA 93: 3444–3449.
  • Wang, Q., T. Stacy, J. D. Miller, A. F. Lewis, T.-L. Gu, X. Huang, J. H. Bushweller, J.-C. Bories, F. W. Alt, G. Ryan, P. P. Liu, A. Wynshaw-Boris, M. Binder, M. Marin-Padilla, A. H. Sharpe, and N. A. Speck 1996. The CBFβ subunit is essential for CBFα2 (AML1) function in vivo. Cell 87: 697–708.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.