2
Views
70
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Involvement of Prolonged Ras Activation in Thrombopoietin-Induced Megakaryocytic Differentiation of a Human Factor-Dependent Hematopoietic Cell Line

, , , , , , , , & show all
Pages 4282-4290 | Received 17 Feb 1998, Accepted 25 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Alexander, W. S., A. B. Maurer, U. Novak, and M. Harrison-Smith 1996. Tyrosine-599 of the c-Mpl receptor is required for Shc phosphorylation and the induction of cellular differentiation. EMBO J. 15: 6531–6540.
  • Chiba, S., F. Takaku, T. Tange, K. Shibuya, C. Misawa, K. Sasaki, K. Miyagawa, Y. Yazaki, and H. Hirai 1991. Establishment and erythroid differentiation of a cytokine-dependent human leukemia cell line F-36P: a parental line requiring granulocyte-macrophage colony-stimulating factor or interleukin-3, and a subline requiring erythropoietin. Blood 78: 2261–2268.
  • Chretien, S., P. Varlet, F. Verdier, S. Gobert, J.-P. Cartron, S. Gisselbrecht, P. Mayeux, and C. Lacombe 1996. Erythropoietin-induced erythroid differentiation of the human erythroleukemia cell line TF-1 correlates with impaired STAT5 activation. EMBO J. 15: 4174–4181.
  • de Rooij, J., and J. L. Bos 1997. Minimal ras-binding domain of raf1 can be used as an activation-specific probe for ras. Oncogene 14: 623–625.
  • de Sauvage, F. J., K. Carver-Moore, S. M. Luoh, A. Ryan, M. Dowd, D. L. Eaton, and M. W. Moore 1996. Physiological regulation of early and late stages of megakaryopoiesis by thrombopoietin. J. Exp. Med. 183: 651–656.
  • Dlugosz, A. A., C. Cheng, E. K. Williams, A. G. Dharia, M. F. Denning, and S. H. Yuspa 1994. Alterations in murine keratinocyte differentiation induced by activated Ha-ras genes are mediated by protein kinase C-α. Cancer Res. 54: 6413–6420.
  • Dobrowolski, S., M. Harter, and D. W. Stacey 1994. Cellular ras activity is required for passage through multiple points of the G0/G1 phase in BALB/c 3T3 cells. Mol. Cell. Biol. 14: 5441–5449.
  • Drachman, J. G., and K. Kaushansky 1997. Dissecting the thrombopoietin receptor: functional elements of the Mpl cytoplasmic domain. Proc. Natl. Acad. Sci. USA 94: 2350–2355.
  • Farese, A. M., P. Hunt, T. Boone, and T. J. MacVittie 1995. Recombinant human megakaryocyte growth and development factor stimulates thrombopoiesis in normal nonhuman primates. Blood 85: 54–59.
  • Feldman, G. M., L. A. Rosenthal, X. Liu, M. P. Hayes, A. Wynshow-Boris, W. J. Leonard, L. Hennighausen, and D. S. Finbloom 1997. STAT5A-deficient mice demonstrate a defect in granulocyte-macrophage colony-stimulating factor-dependent proliferation and gene expression. Blood 90: 1768–1776.
  • Fukada, T., M. Hibi, Y. Yamanaka, M. Takahashi, Y. Fujitani, T. Yamaguchi, K. Nakajima, and T. Hirano 1996. Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis. Immunity 5: 449–460.
  • Gurney, A. L., K. Carver-Moore, F. J. Sauvage, and M. W. Moore 1994. Thrombocytopenia in c-mpl-deficient mice. Science 265: 1445–1447.
  • Gurney, A. L., S. C. Wong, W. J. Henzel, and F. J. Sauvage 1995. Distinct regions of c-mpl cytoplasmic domain are coupled to the JAK-STAT signal transduction pathway and Shc phosphorylation. Proc. Natl. Acad. Sci. USA 92: 5292–5296.
  • Ihle, J. N. 1995. Cytokine receptor signaling. Nature (London) 377: 591–594.
  • Ihle, J. N. 1996. Signal transducers and activators of transcription. Cell 84: 331–334.
  • Iwatsuki, K., T. Endo, H. Misawa, M. Yokouchi, A. Matsumoto, M. Ohtsubo, K. J. Mori, and A. Yoshimura 1997. STAT5 activation correlates with erythropoietin receptor-mediated erythroid differentiation of an erythroleukemia cell line. J. Biol. Chem. 272: 8149–8152.
  • Kanai, T., S. Hirohashi, M. Noguchi, Y. Shimoyama, Y. Shimosato, S. Noguchi, S. Nishimura, and O. Abe 1987. Monoclonal antibody highly sensitive for the detection of ras p21 in immunoblotting analysis. Jpn J. Cancer Res. 78: 1314–1318.
  • Kaushansky, K. 1995. Thrombopoietin: the primary regulator of platelet production. Blood 86: 419–431.
  • Kreider, B. L., and G. Rovera 1992. The immediate early gene response to a differentiative stimulus is disrupted by the v-abl and v-ras oncogenes. Oncogene 7: 135–140.
  • Liu, J.-J., J.-R. Chao, M.-C. Jiang, S.-Y. Ng, J. J.-Y. Yen, and H.-F. Yang-Yen 1995. Ras transformation results in an elevated level of cyclin D1 and acceleration of G1 progression in NIH 3T3 cells. Mol. Cell. Biol. 15: 3654–3663.
  • Liu, X., G. W. Robinson, K.-W. Wagner, L. Garrett, A. Wynshow-Boris, and L. Hennighausen 1997. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11: 179–186.
  • Matsumura, I., Y. Kanakura, T. Kato, H. Ikeda, J. Ishikawa, Y. Horikawa, K. Hashimoto, Y. Moriyama, T. Tsujimura, T. Nishiura, H. Miyazaki, and Y. Matsuzawa 1995. Growth response of acute myeloblastic leukemia cells to recombinant human thrombopoietin. Blood 86: 703–709.
  • Matsumura, I., Y. Kanakura, T. Kato, H. Ikeda, Y. Horikawa, J. Ishikawa, H. Kitayama, T. Nishiura, Y. Tomiyama, H. Miyazaki, and Y. Matsuzawa 1996. The biological properties of recombinant human thrombopoietin in the proliferation and megakaryocytic differentiation of acute myeloblastic leukemia cells. Blood 88: 3074–3082.
  • Matsumura, I., J. Ishikawa, K. Nakajima, K. Oritani, Y. Tomiyama, J.-I. Miyagawa, T. Kato, H. Miyazaki, Y. Matsuzawa, and Y. Kanakura 1997. Thrombopoietin-induced differentiation of a human megakaryoblastic leukemia cell line, CMK, involves transcriptional activation of p21WAF1/Cip1 by STAT5. Mol. Cell. Biol. 17: 2933–2943.
  • McCormick, F. 1994. Activators and effectors of ras p21 protein. Curr. Opin. Genet. Dev. 4: 71–76.
  • Melemed, A. S., J. W. Ryder, and T. A. Vik 1997. Activation of the mitogen-activated protein kinase pathway is involved in and sufficient for megakaryocytic differentiation of CMK cells. Blood 90: 3462–3470.
  • Morella, K. K., E. Bruno, S. Kumaki, C. Lai, J. Fu, H. Wang, L. Murray, R. Hoffman, M. Timour, L. Benit, S. Gisselbrecht, H. Zhuang, D. M. Wojchowski, H. Baumann, and D. P. Gearing 1995. Signal transduction by the receptors for thrombopoietin (c-mpl) and interleukin-3 in hematopoietic and nonhematopoietic cells. Blood 86: 557–571.
  • Morita, H., T. Tahara, A. Matsumoto, T. Kato, H. Miyazaki, and H. Ohashi 1996. Functional analysis of the cytoplasmic domain of the human Mpl receptor for tyrosine-phosphorylation of the signaling molecules, proliferation and differentiation. FEBS Lett. 395: 228–234.
  • Mu, S. X., M. Xia, G. Elliott, J. Bogenberger, S. Swift, L. Bennett, D. L. Lappinga, R. Hecht, R. Lee, and C. J. M. Saris 1995. Megakaryocyte growth and development factor and interleukin-3 induce patterns of protein-tyrosine phosphorylation that correlate with dominant differentiation over proliferation of mpl-transfected 32D cells. Blood 86: 4532–4543.
  • Nakajima, K., T. Kusafuka, T. Takeda, Y. Fujitani, K. Nakae, and T. Hirano 1993. Identification of a novel interleukin-6 response element containing an Ets-binding site and a CRE-like site in the junB promoter. Mol. Cell. Biol. 13: 3027–3041.
  • Nakajima, K., Y. Yamanaka, K. Nakae, H. Kojima, M. Ichiba, N. Kiuchi, T. Kitaoka, T. Fukada, M. Hibi, and T. Hirano 1996. A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO J. 15: 3651–3658.
  • Pallard, C., F. Gouileux, L. Benit, L. Cocault, M. Souyri, D. Levy, B. Groner, S. Gisselbrecht, and I. Dusanter-Fourt 1995. Thrombopoietin activates a STAT5-like factor in hematopoietic cells. EMBO J. 14: 2847–2856.
  • Pidard, D., R. R. Montgomery, J. S. Bennet, and T. J. Kunicki 1983. Interaction of AP2, a monoclonal antibody specific for the human platelet glycoprotein IIb/IIIa complex, with intact platelets. J. Biol. Chem. 258: 12582–12586.
  • Porteu, F., M. Rouyez, L. Cocault, L. Benit, M. Charon, F. Picaro, S. Gisselbrecht, M. Souyri, and I. Dusanter-Fourt 1996. Functional regions of the mouse thrombopoietin receptor cytoplasmic domain: evidence for a critical region which is involved in differentiation and can be complemented by erythropoietin. Mol. Cell. Biol. 16: 2473–2482.
  • Qui, M. S., and S. H. Green 1992. PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron 9: 705–717.
  • Rouyez, M.-C., C. Boucheron, S. Gisselbrecht, I. Dusanter-Fourt, and F. Porteu 1997. Control of thrombopoietin-induced megakaryocytic differentiation by the mitogen-activated protein kinase pathway. Mol. Cell. Biol. 17: 4991–5000.
  • Russo, S., F. Tato, and M. Grossi 1997. Transcriptional down-regulation of myogenin expression is associated with v-ras-induced block of myogenin in unestablished quail muscle cells. Oncogene 14: 63–73.
  • Sirinian, M. I., A. Marchetti, G. Di-Rocco, G. Starace, R. Jucker, and S. Nasi 1993. Ras oncogene transformation of a human B lymphoblast is associated with lymphocyte activation and with a block of differentiation. Oncogene 8: 157–163.
  • Sugahara, H., Y. Kanakura, T. Furitsu, K. Ishihara, K. Oritani, H. Ikeda, H. Kitayama, J. Ishikawa, K. Hashimoto, Y. Kanayama, and Y. Matsuzawa 1994. Induction of programmed cell death in human hematopoietic cell lines by fibronectin via its interaction with very late antigen 5. J. Exp. Med. 179: 1757–1766.
  • Terada, K., Y. Kaziro, and T. Satoh 1995. Ras is not required for the interleukin 3-induced proliferation of a mouse pro-B cell line BaF3. J. Biol. Chem. 46: 27880–27886.
  • Wakao, H., D. Chida, J. E. Damen, G. Krystal, and A. Miyajima 1997. A possible involvement of Stat5 in erythropoietin-induced hemoglobin synthesis. Biochem. Biophys. Res. Commun. 234: 198–205.
  • Whalen, A. N., S. C. Galasinski, P. S. Shapiro, T. S. Nahreini, and N. G. Ahn 1997. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase. Mol. Cell. Biol. 17: 1947–1958.
  • Zeigler, F. C., F. Sauvage, H. R. Widmer, G. A. Keller, C. Donhue, R. D. Schreiber, B. Malloy, P. Hass, D. Eaton, and W. Matthews 1994. In vitro megakaryopoietic and thrombopoietic activity of c-mpl ligand (TPO) on purified murine hematopoietic stem cells. Blood 84: 4045–4052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.