37
Views
55
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Interactions among Drosophila Nuclear Envelope Proteins Lamin, Otefin, and YA

, , , , , , , , & show all
Pages 4315-4323 | Received 19 Nov 1997, Accepted 22 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Ashery-Padan, R., N. Ulitzur, A. Arbel, M. Goldberg, A. M. Weiss, N. Maus, P. A. Fisher, and Y. Gruenbaum 1997. Localization and posttranslational modification of otefin, a protein required for vesicle attachment to chromatin, during Drosophila melanogaster development. Mol. Cell. Biol. 17: 4114–4123.
  • Ashery-Padan, R., A. M. Weiss, N. Feinstein, and Y. Gruenbaum 1997. Distinct regions specify the targeting of otefin to the nucleoplasmic side of the nuclear envelope. J. Biol. Chem. 272: 2493–2499.
  • Ashery-Padan, R., and Y. Gruenbaum. Unpublished observations.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl 1994. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y.
  • Baricheva, E. A., M. Berrios, S. S. Bogachev, I. V. Borisevich, E. R. Lapik, I. V. Sharakhov, N. Stuurman, and P. A. Fisher 1996. DNA from Drosophila melanogaster beta-heterochromatin binds specifically to nuclear lamins in vitro and the nuclear envelope in situ. Gene 171: 171–176.
  • Bartel, P. L., C. T. Chien, R. Sternglanz, and S. Fields 1993. Elimination of false positives that arise in using the two-hybrid system. BioTechniques 14: 920–924.
  • Bartel, P. L., C. T. Chien, R. Sternglanz, and S. Fields 1993. Using the two-hybrid system to detect protein-protein interactions Cellular interactions in development: a practical approach. In: Hartley, D. A.153–179Oxford University Press, Oxford, United Kingdom.
  • Belmont, A. S., Y. Zhai, and A. Thilenius 1993. Lamin B distribution and association with peripheral chromatin revealed by optical sectioning and electron microscopy tomography. J. Cell Biol. 123: 1671–1685.
  • Bossie, C. A., and M. M. Sanders 1993. A cDNA from Drosophila melanogaster encodes a lamin C-like intermediate filament protein. J. Cell Sci. 104: 1263–1272.
  • Breeden, L., and K. Nasmyth 1985. Regulation of the yeast HO gene. Cold Spring Harbor Symp. Quant. Biol. 50: 643–650.
  • Brent, R., Finley, R. L.Jr. 1997. Understanding gene and allele function with two-hybrid methods. Annu. Rev. Genet. 31: 663–704.
  • Brown, N. G., M. C. Costanzo, and T. D. Fox 1994. Interactions among three proteins that specifically activate translation of the mitochondrial COX3 mRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 1045–1053.
  • Dalton, M., and M. Sinensky 1995. Expression systems for nuclear lamin proteins: farnesylation in assembly of nuclear lamina. Methods Enzymol. 250: 134–148.
  • Estojak, J., R. Brent, and E. A. Golemis 1995. Correlation of two-hybrid affinity data with in vitro measurements. Mol. Cell. Biochem. 15: 5820–5829.
  • Fabre, E., and E. C. Hurt 1994. Nuclear transport. Curr. Opin. Cell Biol. 6: 335–342.
  • Firmbach-Kraft, I., and R. Stick 1993. The role of CaaX-dependent modifications in membrane association of Xenopus nuclear lamin B3 during meiosis and the fate of B3 in transfected mitotic cells. J. Cell Biol. 123: 1661–1670.
  • Fisher, P. A. Unpublished data.
  • Fisher, P. A., M. Berrios, and G. Blobel 1982. Isolation and characterization of a proteinaceous subnuclear fraction composed of nuclear matrix, peripheral lamina, and nuclear pore complexes from embryos of Drosophila melanogaster. J. Cell Biol. 92: 674–686.
  • Gerace, L. 1986. Nuclear lamina and organization of nuclear architecture. Trends Biochem. Sci. 11: 443–446.
  • Gerace, L., and B. Burke 1988. Functional organization of the nuclear envelope. Annu. Rev. Cell Biol. 4: 335–374.
  • Gerace, L., and R. Foisner 1994. Integral membrane proteins and dynamic organization of the nuclear envelope. Trends Cell Biol. 4: 127–131.
  • Glass, C. A., J. R. Glass, H. Taniura, K. W. Hasel, J. M. Blevitt, and L. Gerace 1993. The alpha-helical rod domain of human lamins A and C contains a chromatin binding site. EMBO J. 12: 4413–4424.
  • Goldberg, M. W., and T. D. Allen 1995. Structural and functional organization of the nuclear envelope. Curr. Opin. Cell Biol. 7: 301–309.
  • Gruenbaum, Y. Unpublished data.
  • Gruenbaum, Y., Y. Landesman, B. Drees, J. W. Bare, H. Saumweber, M. P. Paddy, J. W. Sedat, D. E. Smith, B. M. Benton, and P. A. Fisher 1988. Drosophila nuclear lamin precursor Dm0 is translated from either of two developmentally regulated mRNA species apparently encoded by a single gene. J. Cell Biol. 106: 585–596.
  • Harel, A., E. Zlotkin, S. Nainudel-Epszteyn, N. Feinstein, P. Fisher, and Y. Gruenbaum 1989. Persistence of major nuclear envelope antigens in an envelope-like structure during mitosis in Drosophila melanogaster embryos. J. Cell Sci. 94: 463–470.
  • Heitlinger, E., M. Peter, A. Lustig, W. Villiger, E. A. Nigg, and U. Aebi 1992. The role of the head and tail domain in lamin structure and assembly: analysis of bacterially-expressed chicken lamin A and truncated B2 lamins. J. Struct. Biol. 108: 74–89.
  • Hennekes, H., and E. A. Nigg 1994. The role of isoprenylation in membrane attachment of nuclear lamins. J. Cell Sci. 107: 1019–1029.
  • Hoey, Y., R. O. J. Weinzierl, G. Gill, J. Chen, B. D. Dynlacht, and R. Tjian 1993. Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72: 247–260.
  • Holtz, D., R. A. Tanaka, J. Hartwig, and F. McKeon 1989. The CaaX motif of lamin A functions in conjunction with the nuclear localization signal to target assembly to the nuclear envelope. Cell 59: 969–977.
  • Hutchison, C. J., J. M. Bridger, L. S. Cox, and I. R. Kill 1994. Weaving a pattern from disparate threads: lamin function in nuclear assembly and DNA replication. J. Cell Sci. 107: 3259–3269.
  • Judd, B. H., and M. W. Young 1973. An examination of the one cistron: one chromomere concept. Cold Spring Harbor Symp. Quant. Biol. 38: 573–579.
  • Karr, T. L., and B. M. Alberts 1986. Organization of the cytoskeleton in early Drosophila embryos. J. Cell Biol. 102: 1494–1509.
  • Kitten, G. T., and E. A. Nigg 1991. The CaaX motif is required for isoprenylation, carboxyl methylation, and nuclear membrane association of lamin B2. J. Cell Biol. 113: 13–23.
  • Krohne, G., I. Waizenegger, and T. H. Hoeger 1989. The conserved carboxy-terminal cysteine of nuclear lamins is essential for lamin association with the nuclear envelope. J. Cell Biol. 109: 2003–2011.
  • Lenz-Böhme, B., J. Wismar, S. Fuchs, R. Reifegerste, E. Buchner, H. Betz, and B. Schmitt 1997. Insertional mutagenesis of the Drosophila nuclear lamin Dm0 gene results in defective nuclear envelopes, clustering of nuclear pore complexes, and accumulation of annulate lamellae. J. Cell Biol. 137: 1001–1016.
  • Lin, H., and M. F. Wolfner 1991. The Drosophila maternal-effect gene fs(1)Ya encodes a cell cycle-dependent nuclear envelope component required for embryonic mitosis. Cell 64: 49–62.
  • Liu, J., H. Lin, J. M. Lopez, and M. F. Wolfner 1997. Formation of the male pronuclear lamina in Drosophila. Dev. Biol. 184: 187–196.
  • Liu, J., J. M. Lopez, and M. F. Wolfner 1996. Developmental modulation of the nuclear envelope. Curr. Top. Dev. Biol. 35: 47–70.
  • Liu, J., K. Song, and M. F. Wolfner 1995. Mutational analyses of fs(1)Ya, an essential, developmentally regulated, nuclear envelope protein in Drosophila. Genetics 141: 1473–1481.
  • Liu, J., and M. F. Wolfner. Unpublished data.
  • Liu, J., and M. F. Wolfner 1998. Functional dissection of YA, an essential, developmentally regulated nuclear lamina protein in Drosophila. Mol. Cell. Biol. 18: 188–197.
  • Lopez, J., K. Song, A. Hirshfeld, H. Lin, and M. F. Wolfner 1994. The Drosophila fs(1)Ya protein, which is needed for the first mitotic division, is in the nuclear lamina and in the envelopes of cleavage nuclei, pronuclei and nonmitotic nuclei. Dev. Biol. 163: 202–211.
  • Lopez, J. M., and M. F. Wolfner 1997. The developmentally regulated Drosophila embryonic nuclear lamina protein ‘Young Arrest’ (fs(1)Ya) is capable of associating with chromatin. J. Cell Sci. 110: 643–651.
  • Miller, K. G., T. L. Karr, D. R. Kellogg, J. I. Mohr, M. Walter, and B. M. Alberts 1985. Studies on the cytoplasmic organization of early Drosophila embryos. Cold Spring Harbor Symp. Quant. Biol. 50: 79–90.
  • Nigg, E. A. 1989. The nuclear envelope. Curr. Opin. Cell Biol. 1: 435–440.
  • Padan, R., S. Nainudel-Epszteyn, R. Goitein, A. Fainsod, and Y. Gruenbaum 1990. Isolation and characterization of the Drosophila nuclear envelope otefin cDNA. J. Biol. Chem. 265: 7808–7813.
  • Paddy, M. R., A. S. Belmont, H. Saumweber, D. A. Agard, and J. W. Sedat 1990. Interphase nuclear envelope lamins form a discontinuous network that interacts with only a fraction of the chromatin in the nuclear periphery. Cell 62: 89–106.
  • Pascal, E., and R. Tjian 1991. Different activation domains of SP1 govern formation of multimers and mediate transcriptional synergism. Genes Dev. 5: 1646–1656.
  • Riemer, D., N. Stuurman, M. Berrios, C. Hunter, P. A. Fisher, and K. Weber 1995. Expression of Drosophila lamin C is developmentally regulated: analogies with vertebrate A-type lamins. J. Cell Sci. 108: 3189–3198.
  • Riemer, D., and K. Weber 1994. The organization of the gene for Drosophila lamin C: limited homology with vertebrate lamin genes and lack of homology versus the Drosophila lamin Dm0 gene. Euro. J. Cell. Biol. 63: 299–306.
  • Rzepecki, R., S. Bogachev, E. Kokoza, N. Stuurman, and P. A. Fisher 1998. In vivo association of lamins with nucleic acids in Drosophila melanogaster. J. Cell Sci. 111: 121–129.
  • Sasse, B., A. Lustig, U. Aebi, and N. Stuurman 1997. In vitro assembly of Drosophila lamin Dm0: lamin polymerization properties are conserved. Eur. J. Biochem. 250: 30–38.
  • Schmidt, M., and G. Krohne 1995. In vivo assembly kinetics of fluorescently-labeled Xenopus lamin A mutants. Eur. J. Cell Biol. 68: 345–354.
  • Smith, D. E., and P. A. Fisher 1989. Interconversion of Drosophila nuclear lamin isoforms during oogenesis, early embryogenesis, and upon entry of cultured cells into mitosis. J. Cell Biol. 108: 255–265.
  • Smith, D. E., Y. Gruenbaum, M. Berrios, and P. A. Fisher 1987. Biosynthesis and interconversion of Drosophila nuclear lamin isoforms during normal growth and in response to heat shock. J. Cell Biol. 105: 771–790.
  • Song, K. 1994. Developmental, genetic, and biochemical studies of fs(1)Ya, a nuclear envelope protein required for embryonic mitosis in Drosophila. Ph.D. thesis Cornell University, Ithaca, N.Y.
  • Soullam, B., and H. J. Worman 1995. Signals and structural features involved in integral membrane protein targeting to the inner nuclear membrane. J. Cell Biol. 130: 15–27.
  • Sterne-Marr, R., J. M. Blevitt, and L. Gerace 1992. O-linked glycoproteins of the nuclear pore complex interact with a cytosolic factor required for nuclear protein import. J. Cell Biol. 116: 271–280.
  • Stuurman, N., N. Maus, and P. A. Fisher 1995. Interphase phosphorylation of the Drosophila nuclear lamin: site-mapping using a monoclonal antibody. J. Cell Sci. 108: 3137–3144.
  • Stuurman, N., B. Sasse, and P. A. Fisher 1996. Intermediate filament protein polymerization: Molecular analysis of Drosophila nuclear lamin head-to-tail binding. J. Struct. Biol. 117: 1–15.
  • Taniura, H., C. Glass, and L. Gerace 1995. A chromatin binding site in the tail domain of nuclear lamins that interacts with core histones. J. Cell Biol. 131: 33–44.
  • Turner, S. G. 1996. Interactions and posttranslational modifications of YA, a Drosophila nuclear envelope protein. M.S. thesis Cornell University, Ithaca, N.Y.
  • Ulitzur, N., A. Harel, N. Feinstein, M. Goldberg, and Y. Gruenbaum 1997. Nuclear membrane vesicle targeting to chromatin in a Drosophila embryo cell-free system. Mol. Biol. Cell 8: 1439–1448.
  • Ulitzur, N., A. Harel, N. Feinstein, and Y. Gruenbaum 1992. Lamin activity is essential for nuclear envelope assembly in a Drosophila embryo cell-free extract. J. Cell Biol. 115: 941–948.
  • Whalen, A. M., M. McConnell, and P. A. Fisher 1991. Developmental regulation of Drosophila DNA topoisomerase II. J. Cell Biol. 112: 203–214.
  • Yang, L., T. Guan, and L. Gerace 1997. Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J. Cell Biol. 137: 1199–1210.
  • Yu, J., and M. F. Wolfner. Unpublished data.
  • Zhao, K., A. Harel, N. Stuurman, D. Guedalia, and Y. Gruenbaum 1996. Binding of matrix attachment regions to nuclear lamin is mediated by the rod domain and depends on the lamin polymerization state. FEBS Lett. 380: 161–164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.