47
Views
80
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

PEX12, the Pathogenic Gene of Group III Zellweger Syndrome: cDNA Cloning by Functional Complementation on a CHO Cell Mutant, Patient Analysis, and Characterization of Pex12p

, , , , , , , , , & show all
Pages 4324-4336 | Received 24 Oct 1997, Accepted 26 Mar 1998, Published online: 28 Mar 2023

REFERENCES

  • Berteaux-Lecellier, V., M. Picard, C. Thompson-Coffe, D. Zickler, A. Panvier-Adoutte, and J.-M. Simonet 1995. A nonmammalian homolog of the PAF1 gene (Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina. Cell 81: 1043–1051.
  • Braverman, N., G. Steel, C. Obie, A. Moser, H. Moser, S. J. Gould, and D. Valle 1997. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat. Genet. 15: 369–376.
  • Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher 1994. Green fluorescent protein as a marker for gene expression. Science (Washington, D.C.) 263: 802–805.
  • Chang, C.-C., W.-H. Lee, H. Moser, D. Valle, and S. J. Gould 1997. Isolation of the human PEX12 gene, mutated in group 3 of the peroxisome biogenesis disorders. Nat. Genet. 15: 385–388.
  • Chomczynski, P., and N. Sacchi 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-PhOH-chloroform extraction. Anal. Biochem. 162: 156–159.
  • Distel, B., R. Erdmann, S. J. Gould, G. Blobel, D. I. Crane, J. M. Cregg, G. Dodt, Y. Fujiki, J. M. Goodman, W. W. Just, J. A. K. W. Kiel, W.-H. Kunau, P. B. Lazarow, G. P. Mannaerts, H. Moser, T. Osumi, R. A. Rachubinski, A. Roscher, S. Subramani, H. F. Tabak, T. Tsukamoto, D. Valle, I. van der Klei, P. P. van Veldhoven, and M. Veenhuis 1996. A unified nomenclature for peroxisome biogenesis factors. J. Cell Biol. 135: 1–3.
  • Dodt, G., N. Braverman, C. S. Wong, A. Moser, H. W. Moser, P. Watkins, D. Valle, and S. J. Gould 1995. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat. Genet. 9: 115–125.
  • Eitzen, G. A., V. I. Titorenko, J. J. Smith, M. Veenhuis, R. K. Szilard, and R. A. Rachubinski 1996. The Yarrowia lipolytica gene PAY5 encodes a peroxisomal integral membrane protein homologous to the mammalian peroxisome assembly factor PAF-1. J. Biol. Chem. 271: 20300–20306.
  • Fransen, M., C. Brees, E. Baumgart, J. C. Vanhooren, M. Baes, G. P. Mannaerts, and P. P. V. Veldhoven 1995. Identification and characterization of the putative human peroxisomal C-terminal targeting signal import receptor. J. Biol. Chem. 270: 7731–7736.
  • Fujiki, Y. 1996. Approaches to studies on peroxisome biogenesis and human peroxisome-deficient disorders. Ann. N. Y. Acad. Sci. 804: 491–501.
  • Fujiki, Y. 1997. Molecular defects in genetic diseases of peroxisomes. Biochim. Biophys. Acta 1361: 235–250.
  • Fujiki, Y., R. A. Rachubunski, and P. B. Lazarow 1984. Synthesis of a major integral membrane polypeptide of rat liver peroxisomes on free polysomes. Proc. Natl. Acad. Sci. USA 81: 7127–7131.
  • Fukuda, S., N. Shimozawa, Y. Suzuki, S. Tomatsu, T. Tsukamoto, N. Hashiguchi, T. Osumi, M. Masuno, K. Imaizumi, Y. Kuroki, Y. Fujiki, T. Orii, and N. Kondo 1996. Human peroxisome assembly factor-2 (human PAF-2): a gene responsible for group C peroxisome biogenesis disorder in humans. Am. J. Hum. Genet. 59: 1210–1220.
  • Gould, S. J., J. E. Kalish, J. C. Morrell, J. Bjorkman, A. J. Urquhart, and D. I. Crane 1996. Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTS1 receptor. J. Cell Biol. 135: 85–95.
  • Hess, R., W. Staubli, and W. Reiss 1965. Nature of the hepatomegalic effect produced by ethyl-chlorophenoxyisobutyrate in the rat. Nature 208: 856–858.
  • Hijikata, M., N. Ishii, H. Kagamiyama, T. Osumi, and T. Hashimoto 1987. Structural analysis of cDNA for rat peroxisomal 3-ketoacyl-CoA thiolase. J. Biol. Chem. 262: 8151–8158.
  • Hoehfeld, J., D. Mertens, F. F. Wiebel, and W.-H. Kunau 1992. Defining components required for peroxisome assembly in Saccharomyces cerevisiae Membrane biogenesis and protein targeting. In: Neupert, W., and R. Lill185–207Elsevier Science Publishers B.V., Amsterdam, The Netherlands.
  • Kalish, J. E., G. A. Keller, J. C. Morrell, S. J. Mihalik, B. Smith, J. M. Cregg, and S. J. Gould 1996. Characterization of a novel component of the peroxisomal protein import apparatus using fluorescent peroxisomal proteins. EMBO J. 15: 3275–3285.
  • Kalish, J. E., C. Theda, J. C. Morrell, J. M. Berg, and S. J. Gould 1995. Formation of the peroxisome lumen is abolished by loss of Pichia pastoris Pas7p, a zinc-binding integral membrane protein of the peroxisome. Mol. Cell. Biol. 15: 6406–6419.
  • Kunau, W.-H., A. Beyer, T. Franken, K. Goette, M. Marzioch, J. Saidowsky, A. Skaletz-Rorowski, and F. F. Wiebel 1993. Two complementary approaches to study peroxisome biogenesis in Saccharomyces cerevisiae: forward and reversed genetics. Biochimie 75: 209–224.
  • Lazarow, P. B., and Y. Fujiki 1985. Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1: 489–530.
  • Lazarow, P. B., and H. W. Moser 1995. Disorders of peroxisome biogenesis The metabolic basis of inherited disease7th ed.Scriver, C. R., A. I. Beaudet, W. S. Sly, and D. Valle2287–2324McGraw-Hill, New York, N.Y.
  • Miura, S., S. Miyazawa, T. Osumi, T. Hashimoto, and Y. Fujiki 1994. Post-translational import of 3-ketoacyl-CoA thiolase into rat liver peroxisomes in vitro. J. Biochem. 115: 1064–1068.
  • Miyazawa, S., H. Hayashi, M. Hijikata, N. Ishii, S. Furuta, H. Kagamiyama, T. Osumi, and T. Hashimoto 1987. Complete nucleotide sequence of cDNA and predicted amino acid sequence of rat acyl-CoA oxidase. J. Biol. Chem. 262: 8131–8137.
  • Miyazawa, S., T. Osumi, T. Hashimoto, K. Ohno, S. Miura, and Y. Fujiki 1989. Peroxisome targeting signal of rat liver acyl-coenzyme A oxidase resides at the carboxy terminus. Mol. Cell. Biol. 9: 83–91.
  • Morand, O. H., L.-A. H. Allen, R. A. Zoeller, and C. R. H. Raetz 1990. A rapid selection for animal cell mutants with defective peroxisomes. Biochim. Biophys. Acta 1034: 132–141.
  • Moser, A. B., M. Rasmussen, S. Naidu, P. A. Watkins, M. McGuiness, A. K. Hajra, G. Chen, G. Raymond, A. Liu, D. Gordon, K. Garnaas, D. S. Walton, O. H. Skjeldal, M. A. Guggenheim, L. G. Jackson, E. R. Elias, and H. W. Moser 1995. Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups. J. Pediatr. 127: 13–22.
  • Motley, A., E. Hettema, B. Distel, and H. Tabak 1994. Differential protein import deficiencies in human peroxisome assembly disorders. J. Cell Biol. 125: 755–767.
  • Motley, A. M., E. H. Hettema, E. M. Hogenhout, P. Brites, A. L. M. A. ten Asbroek, F. A. Wijburg, F. Baas, H. S. Heijmans, H. F. Tabak, R. J. A. Wanders, and B. Distel 1997. Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nat. Genet. 15: 377–380.
  • Niman, H. L., R. A. Houghten, L. E. Walker, R. A. Reisfeld, I. A. Wilson, J. M. Hogle, and R. A. Lerner 1983. Generation of protein-reactive antibodies by short peptides is an event of high frequency: implications for the structural basis of immune recognition. Proc. Natl. Acad. Sci. USA 80: 4949–4953.
  • Okamoto, H., Y. Suzuki, N. Shimozawa, S. Yajima, M. Masuno, and T. Orii 1992. Transformation and characterization of mutant human fibroblasts defective in peroxisome assembly. Exp. Cell Res. 201: 307–312.
  • Okumoto, K., A. Bogaki, K. Tateishi, T. Tsukamoto, T. Osumi, N. Shimozawa, Y. Suzuki, T. Orii, and Y. Fujiki 1997. Isolation and characterization of peroxisome-deficient Chinese hamster ovary cell mutants representing human complementation group III. Exp. Cell Res. 233: 11–20.
  • Okumoto, K., and Y. Fujiki 1997. PEX12 encodes an integral membrane protein of peroxisomes. Nat. Genet. 17: 265–266.
  • Osumi, T., T. Tsukamoto, S. Hata, S. Yokota, S. Miura, Y. Fujiki, M. Hijikata, S. Miyazawa, and T. Hashimoto 1991. Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem. Biophys. Res. Commun. 181: 947–954.
  • Otera, H., K. Tateishi, K. Okumoto, Y. Ikoma, E. Matsuda, M. Nishimura, T. Tsukamoto, T. Osumi, K. Ohashi, O. Higuchi, and Y. Fujiki 1998. Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: studies with PEX5-defective CHO cell mutants. Mol. Cell. Biol. 18: 388–399.
  • Portsteffen, H., A. Beyer, E. Becker, C. Epplen, A. Pawlak, W.-H. Kunau, and G. Dodt 1997. Human PEX1 is mutated in complementation group 1 of the peroxisome biogenesis disorders. Nat. Genet. 17: 449–452.
  • Poulos, A., J. Christodoulou, C. W. Chow, J. Goldblatt, B. C. Paton, T. Orii, Y. Suzuki, and N. Shimozawa 1995. Peroxisomal assembly defects: clinical, pathologic, and biochemical findings in two patients in a newly identified complementation group. J. Pediatr. 127: 596–599.
  • Purdue, P. E., J. W. Zhang, M. Skoneczny, and P. B. Lazarow 1997. Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nat. Genet. 15: 381–384.
  • Rachubinski, R. A., Y. Fujiki, R. M. Mortensen, and P. B. Lazarow 1984. Acyl-CoA oxidase and hydratase-dehydrogenase, two enzymes of the peroxisomal β-oxidation system, are synthesized on free polysomes of clofibrate-treated rat liver. J. Cell Biol. 99: 2241–2246.
  • Reuber, B. E., E. Germain-Lee, C. S. Collins, J. C. Morrell, R. Ameritunga, H. W. Moser, D. Valle, and S. J. Gould 1997. Mutations in PEX1 are the most common cause of peroxisome biogenesis disorders. Nat. Genet. 17: 445–448.
  • Santos, M. J., S. Hoefler, A. B. Moser, H. W. Moser, and P. B. Lazarow 1992. Peroxisome assembly mutations in humans: structural heterogeneity in Zellweger syndrome. J. Cell. Physiol. 151: 103–112.
  • Saurin, A. J., K. L. B. Borden, M. N. Boddy, and P. S. Freemont 1996. Does this have a familiar RING? Trends Biochem. Sci. 21: 208–214.
  • Shimozawa, N., T. Tsukamoto, Y. Suzuki, T. Orii, and Y. Fujiki 1992. Animal cell mutants represent two complementation groups of peroxisome-defective Zellweger syndrome. J. Clin. Invest. 90: 1864–1870.
  • Shimozawa, N., T. Tsukamoto, Y. Suzuki, T. Orii, Y. Shirayoshi, T. Mori, and Y. Fujiki 1992. A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science (Washington, D.C.) 255: 1132–1134.
  • Shimozawa, N., et al. Unpublished data.
  • Slawecki, M. L., G. Dodt, S. Steinberg, A. B. Moser, H. W. Moser, and S. J. Gould 1995. Identification of three distinct peroxisomal protein import defects in patients with peroxisome biogenesis disorders. J. Cell Sci. 108: 1817–1829.
  • Subramani, S. 1993. Protein import into peroxisomes and biogenesis of the organelle. Annu. Rev. Cell Biol. 9: 445–478.
  • Swinkels, B. W., S. J. Gould, A. G. Bodnar, R. A. Rachubinski, and S. Subramani 1991. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 10: 3255–3262.
  • Tamura, S., K. Okumoto, R. Toyama, N. Shimozawa, T. Tsukamoto, Y. Suzuki, T. Osumi, N. Kondo, and Y. Fujiki 1998. Human PEX1 cloned by functional complementation on a CHO cell mutant is responsible for peroxisome-deficient Zellweger syndrome of complementation group I. Proc. Natl. Acad. Sci. USA 95: 4350–4355.
  • Tan, X., H. R. Waterham, M. Veenhuis, and J. M. Cregg 1995. The Hansenula polymorpha PER8 gene encodes a novel peroxisomal integral membrane protein involved in proliferation. J. Cell Biol. 128: 307–319.
  • Tateishi, K., K. Okumoto, N. Shimozawa, T. Tsukamoto, T. Osumi, Y. Suzuki, N. Kondo, I. Okano, and Y. Fujiki 1997. Newly identified Chinese hamster ovary cell mutants defective in peroxisome biogenesis represent two novel complementation groups in mammals. Eur. J. Cell Biol. 73: 352–359.
  • Thieringer, R., and C. R. H. Raetz 1993. Peroxisome-deficient Chinese hamster ovary cells with point mutations in peroxisome assembly factor-1. J. Biol. Chem. 268: 12631–12636.
  • Tsukamoto, T., A. Bogaki, K. Okumoto, K. Tateishi, Y. Fujiki, N. Shimozawa, Y. Suzuki, N. Kondo, and T. Osumi 1997. Isolation of a new peroxisome deficient CHO cell mutant defective in peroxisome targeting signal-1 receptor. Biochem. Biophys. Res. Commun. 230: 402–406.
  • Tsukamoto, T., S. Hata, S. Yokota, S. Miura, Y. Fujiki, M. Hijikata, S. Miyazawa, T. Hashimoto, and T. Osumi 1994. Characterization of the signal peptide at the amino terminus of the rat peroxisomal 3-ketoacyl-CoA thiolase precursor. J. Biol. Chem. 269: 6001–6010.
  • Tsukamoto, T., S. Miura, and Y. Fujiki 1991. Restoration by a 35K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature 350: 77–81.
  • Tsukamoto, T., S. Miura, T. Nakai, S. Yokota, N. Shimozawa, Y. Suzuki, T. Orii, Y. Fujiki, F. Sakai, A. Bogaki, H. Yasumo, and T. Osumi 1995. Peroxisome assembly factor-2, a putative ATPase cloned by functional complementation on a peroxisome-deficient mammalian cell mutant. Nat. Genet. 11: 395–401.
  • Tsukamoto, T., N. Shimozawa, and Y. Fujiki 1994. Peroxisome assembly factor 1: nonsense mutation in a peroxisome-deficient Chinese hamster ovary cell mutant and deletion analysis. Mol. Cell. Biol. 14: 5458–5465.
  • Tsukamoto, T., S. Yokota, and Y. Fujiki 1990. Isolation and characterization of Chinese hamster ovary cell mutants defective in assembly of peroxisomes. J. Cell Biol. 110: 651–660.
  • van den Bosch, H., R. B. H. Schutgens, R. J. A. Wanders, and J. M. Tager 1992. Biochemistry of peroxisomes. Annu. Rev. Biochem. 61: 157–197.
  • Waterham, H. R., Y. de Vries, K. A. Russel, W. Xie, M. Vennhuis, and J. M. Cregg 1996. The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1. Mol. Cell. Biol. 16: 2527–2536.
  • Wendland, M., and S. Subramani 1993. Presence of cytoplasmic factors functional in peroxisomal protein import implicates organelle-associated defects in several human peroxisomal disorders. J. Clin. Invest. 92: 2462–2468.
  • Wiemer, E. A., W. M. Nuttley, B. L. Bertolaet, X. Li, U. Francke, M. J. Wheelock, U. K. Anne, K. R. Johnson, and S. Subramani 1995. Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J. Cell Biol. 130: 51–65.
  • Wiemer, E. A. C., S. Brul, W. W. Just, R. van Driel, E. Brouwer-Kelder, M. van den Berg, P. J. Weijers, R. B. H. Schutgens, H. van den Bosch, A. Schram, R. J. A. Wanders, and J. M. Tager 1989. Presence of peroxisomal membrane proteins in liver and fibroblasts from patients with the Zellweger syndrome and related disorders: evidence for the existence of peroxisomal ghosts. Eur. J. Cell Biol. 50: 407–417.
  • Yahraus, T., N. Braverman, G. Dodt, J. E. Kalish, J. C. Morrell, H. W. Moser, D. Valle, and S. J. Gould 1996. The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. EMBO J. 15: 2914–2923.
  • Yajima, S., Y. Suzuki, N. Shimozawa, S. Yamaguchi, T. Orii, Y. Fujiki, T. Osumi, T. Hashimoto, and H. W. Moser 1992. Complementation study of peroxisome-deficient disorders by immunofluorescence staining and characterization of fused cells. Hum. Genet. 88: 491–499.
  • Zoeller, R. A., L.-A. H. Allen, M. J. Santos, P. B. Lazarow, T. Hashimoto, A. M. Tartakoff, and C. R. H. Raetz 1989. Chinese hamster ovary cell mutants defective in peroxisome biogenesis. Comparison to Zellweger syndrome. J. Biol. Chem. 264: 21872–21878.
  • Zoeller, R. A., O. H. Morand, and C. R. H. Raetz 1988. A possible role for plasmalogens in protecting animal cells against photosensitized killing. J. Biol. Chem. 263: 11590–11596.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.