14
Views
16
CrossRef citations to date
0
Altmetric
Gene Expression

Positive and Negative Autoregulation ofREB1 Transcription in Saccharomyces cerevisiae

&
Pages 4368-4376 | Received 20 Jan 1998, Accepted 07 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Aiyar, A., and J. Leis 1993. Modification of the megaprimer method of PCR mutagenesis: improved amplification of the final product. BioTechniques 14: 366–368.
  • Angel, P., K. Hattori, T. Smeal, and M. Karin 1988. The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell 55: 875–885.
  • Bartsch, I., C. Schoneberg, and I. Grummt 1988. Purification and characterization of TTFI, a factor that mediates termination of mouse ribosomal DNA transcription. Mol. Cell. Biol. 8: 3891–3897.
  • Brandl, C. J., and K. Struhl 1990. A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element. Mol. Cell. Biol. 10: 4256–4265.
  • Burns, L. G., and C. L. Peterson 1997. The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo. Mol. Cell. Biol. 17: 4811–4819.
  • Butlin, M., and R. Quincey 1991. Activity of promoter mutants of the yeast ribosomal RNA gene with and without the enhancer. Yeast 7: 679–689.
  • Carey, J. 1988. Gel retardation at low pH resolves trp repressor-DNA complexes for quantitative study. Proc. Natl. Acad. Sci. USA 85: 975–979.
  • Carmen, A. A., and M. J. Holland 1994. The upstream repression sequence from the yeast enolase gene ENO1 is a complex regulatory element that binds multiple trans-acting factors including REB1. J. Biol. Chem. 269: 9790–9797.
  • Chasman, D. I., N. F. Lue, A. R. Buchman, J. W. LaPointe, Y. Lorch, and R. D. Kornberg 1990. A yeast protein that influences the chromatin structure of UASG and functions as a powerful auxiliary gene activator. Genes Dev. 4: 503–514.
  • Chen, B. P., and T. Hai 1994. Expression vectors for affinity purification and radiolabeling of proteins using Escherichia coli as host. Gene 139: 73–75.
  • Dabeva, M. D., and J. R. Warner 1987. The yeast ribosomal protein L32 and its gene. J. Biol. Chem. 262: 16055–16059.
  • Delahodde, A., T. Delaveau, and C. Jacq 1995. Positive autoregulation of the yeast transcription factor Pdr3p, which is involved in control of drug resistance. Mol. Cell. Biol. 15: 4043–4051.
  • Erkine, A. M., C. C. Adams, T. Diken, and D. S. Gross 1996. Heat shock factor gains access to the yeast HSC82 promoter independently of other sequence-specific factors and antagonizes nucleosomal repression of basal and induced transcription. Mol. Cell. Biol. 16: 7004–7017.
  • Evers, R., and I. Grummt 1995. Molecular coevolution of mammalian ribosomal gene terminator sequences and the transcription termination factor TTF-I. Proc. Natl. Acad. Sci. USA 92: 5827–5831.
  • Evers, R., A. Smid, U. Rudloff, F. Lottspeich, and I. Grummt 1995. Different domains of the murine RNA polymerase I-specific termination factor mTTF-I serve distinct functions in transcription termination. EMBO J. 14: 1248–1256.
  • Facchini, L. M., S. Chen, W. W. Marhin, J. N. Lear, and L. Z. Penn 1997. The Myc negative autoregulation mechanism requires Myc-Max association and involves the c-myc P2 minimal promoter. Mol. Cell. Biol. 17: 100–114.
  • Fedor, M. J., N. F. Lue, and R. D. Kornberg 1988. Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. J. Mol. Biol. 204: 109–127.
  • Gerber, J. K., E. Gogel, C. Berger, M. Wallisch, F. Muller, I. Grummt, and F. Grummt 1997. Termination of mammalian rDNA replication: polar arrest of replication fork movement by transcription termination factor TTF-I. Cell 90: 559–567.
  • Graham, I. R., and A. Chambers 1994. The Reb1p-binding site is required for efficient activation of the yeast RAP1 gene, but multiple binding sites for Rap1p are not essential. Mol. Microbiol. 12: 931–940.
  • Graham, I. R., and A. Chambers 1996. Rap1p is a negative regulator of the RAP1 gene. Curr. Genet. 30: 93–100.
  • Grummt, I., A. Kuhn, I. Bartsch, and H. Rosenbauer 1986. A transcription terminator located upstream of the mouse rDNA initiation site affects rRNA synthesis. Cell 47: 901–911.
  • Grummt, I., U. Maier, A. Ohrlein, N. Hassouna, and J. P. Bachellerie 1985. Transcription of mouse rDNA terminates downstream of the 3′ end of 28S RNA and involves interaction of factors with repeated sequences in the 3′ spacer. Cell 43: 801–810.
  • Herrick, D., R. Parker, and A. Jacobson 1990. Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 2269–2284.
  • Hill, J. E., A. M. Myers, T. J. Koerner, and A. Tzagoloff 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2: 163–167.
  • Hu, M. C., and N. Davidson 1987. The inducible lac operator-repressor system is functional in mammalian cells. Cell 48: 555–566.
  • Huie, M. A., E. W. Scott, C. M. Drazinic, M. C. Lopez, I. K. Hornstra, T. P. Yang, and H. V. Baker 1992. Characterization of the DNA-binding activity of GCR1: in vivo evidence for two GCR1-binding sites in the upstream activating sequence of TPI of Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 2690–2700.
  • Johnston, M., and R. W. Davis 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 1440–1448.
  • Ju, Q., B. E. Morrow, and J. R. Warner 1990. REB1, a yeast DNA-binding protein with many targets, is essential for growth and bears some resemblance to the oncogene myb. Mol. Cell. Biol. 10: 5226–5234.
  • Kim, T., T. Lagrange, Y. Wang, J. D. Griffith, D. Reinberg, and R. H. Ebright 1997. Trajectory of DNA in the RNA polymerase II transcription preinitiation complex. Proc. Natl. Acad. Sci. USA 94: 12268–12273.
  • Krumm, A., T. Meulia, and M. Groudine 1993. Common mechanisms for the control of eukaryotic transcriptional elongation. Bioessays 15: 659–665.
  • Kulkens, T., C. A. van der Sande, A. F. Dekker, H. van Heerikhuizen, and R. J. Planta 1992. A system to study transcription by yeast RNA polymerase I within the chromosomal context: functional analysis of the ribosomal DNA enhancer and the RBP1/REB1 binding sites. EMBO J. 11: 4665–4674.
  • Kulkens, T., H. van Heerikhuizen, J. Klootwijk, J. Oliemans, and R. J. Planta 1989. A yeast ribosomal DNA-binding protein that binds to the rDNA enhancer and also close to the site of Pol I transcription initiation is not important for enhancer functioning. Curr. Genet. 16: 351–359.
  • Lang, W. H., B. E. Morrow, Q. Ju, J. R. Warner, and R. H. Reeder 1994. A model for transcription termination by RNA polymerase I. Cell 79: 527–534.
  • Lang, W. H., and R. H. Reeder 1993. The REB1 site is an essential component of a terminator for RNA polymerase I in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 649–658.
  • Lang, W. H., and R. H. Reeder 1995. Transcription termination of RNA polymerase I due to a T-rich element interacting with Reb1p. Proc. Natl. Acad. Sci. USA 92: 9781–9785.
  • Langst, G., T. A. Blank, P. B. Becker, and I. Grummt 1997. RNA polymerase I transcription on nucleosomal templates: the transcription termination factor TTF-I induces chromatin remodeling and relieves transcriptional repression. EMBO J. 16: 760–768.
  • Liaw, P. C., and C. J. Brandl 1994. Defining the sequence specificity of the Saccharomyces cerevisiae DNA binding protein REB1p by selecting binding sites from random-sequence oligonucleotides. Yeast 10: 771–787.
  • Lockhart, D. J. Personal communication.
  • McLean, M., A. V. Hubberstey, D. J. Bouman, N. Pece, P. Mastrangelo, and A. G. Wildeman 1995. Organization of the Saccharomyces cerevisiae actin gene UAS: functional significance of reiterated REB1 binding sites and AT-rich elements. Mol. Microbiol. 18: 605–614.
  • Morita, T., K. Shigesada, F. Kimizuka, and H. Aiba 1988. Regulatory effect of a synthetic CRP recognition sequence placed downstream of a promoter. Nucleic Acids Res. 16: 7315–7332.
  • Morrow, B. E., S. P. Johnson, and J. R. Warner 1989. Proteins that bind to the yeast rDNA enhancer. J. Biol. Chem. 264: 9061–9068.
  • Morrow, B. E., Q. Ju, and J. R. Warner 1990. Purification and characterization of the yeast rDNA binding protein REB1. J. Biol. Chem. 265: 20778–20783.
  • Morrow, B. E., Q. Ju, and J. R. Warner 1993. A bipartite DNA-binding domain in yeast Reb1p. Mol. Cell. Biol. 13: 1173–1182.
  • Nicolaides, N. C., R. Gualdi, C. Casadevall, L. Manzella, and B. Calabretta 1991. Positive autoregulation of c-myb expression via Myb binding sites in the 5′ flanking region of the human c-myb gene. Mol. Cell. Biol. 11: 6166–6176.
  • Nonet, M., C. Scafe, J. Sexton, and R. Young 1987. Eucaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis. Mol. Cell. Biol. 7: 1602–1611.
  • Ofir, R., V. J. Dwarki, D. Rashid, and I. M. Verma 1990. Phosphorylation of the C terminus of Fos protein is required for transcriptional transrepression of the c-fos promoter. Nature 348: 80–82.
  • Packham, E. A., I. R. Graham, and A. Chambers 1996. The multifunctional transcription factors Abf1p, Rap1p and Reb1p are required for full transcriptional activation of the chromosomal PGK gene in Saccharomyces cerevisiae. Mol. Gen. Genet. 250: 348–356.
  • Paulmier, N., M. Yaniv, B. von Wilcken-Bergmann, and B. Muller-Hill 1987. gal4 transcription activator protein of yeast can function as a repressor in Escherichia coli. EMBO J. 6: 3539–3542.
  • Ptashne, M. 1986. A genetic switch: gene control and phage λ. Cell Press & Blackwell Scientific Publications, Ltd., Oxford, England.
  • Remacle, J. E., and S. Holmberg 1992. A REB1-binding site is required for GCN4-independent ILV1 basal level transcription and can be functionally replaced by an ABF1-binding site. Mol. Cell. Biol. 12: 5516–5526.
  • Rose, M. D., F. Winston, and P. Hieter 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194: 281–301.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Schmitt, M. E., T. A. Brown, and B. L. Trumpower 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18: 3091–3092.
  • Scott, E. W., and H. V. Baker 1993. Concerted action of the transcriptional activators REB1, RAP1, and GCR1 in the high-level expression of the glycolytic gene TPI. Mol. Cell. Biol. 13: 543–550.
  • Sellitti, M. A., P. A. Pavco, and D. A. Steege 1987. lac repressor blocks in vivo transcription of lac control region DNA. Proc. Natl. Acad. Sci. USA 84: 3199–3203.
  • Serfling, E. 1989. Autoregulation—a common property of eukaryotic transcription factors? Trends Genet. 5: 131–133.
  • Sikorski, R. S., and P. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Studier, F. W., A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185: 60–89.
  • Thomas, B. J., and R. Rothstein 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56: 619–630.
  • Velculescu, V. E., L. Zhang, W. Zhou, J. Vogelstein, M. A. Basrai, Bassett D. E., Jr., P. Hieter, B. Vogelstein, and K. W. Kinzler 1997. Characterization of the yeast transcriptome. Cell 88: 243–251.
  • Wang, H., P. R. Nicholson, and D. J. Stillman 1990. Identification of a Saccharomyces cerevisiae DNA-binding protein involved in transcriptional regulation. Mol. Cell. Biol. 10: 1743–1753.
  • Warner, J. R. 1989. Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol. Rev. 53: 256–271.
  • Wodicka, L., H. Dong, M. Mittmann, M. Ho, and D. J. Lockhart 1997. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat. Biotechnol. 15: 1359–1367.
  • Wu, H. M., and D. M. Crothers 1984. The locus of sequence-directed and protein-induced DNA bending. Nature 308: 509–513.
  • Zhou, P., and D. J. Thiele 1993. Rapid transcriptional autoregulation of a yeast metalloregulatory transcription factor is essential for high-level copper detoxification. Genes Dev. 7: 1824–1835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.