16
Views
236
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Transcriptional Regulation of the MDR1 Gene by Histone Acetyltransferase and Deacetylase Is Mediated by NF-Y

&
Pages 4377-4384 | Received 20 Oct 1997, Accepted 21 Apr 1998, Published online: 28 Mar 2023

REFERENCES

  • Alland, L., R. Muhle, Hou H., Jr., J. Potes, L. Chin, N. Schreiber-Agus, and R. A. Depinho 1997. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387: 49–55.
  • Bartsch, J., M. Truss, J. Bode, and M. Beato 1996. Moderate increase in histone acetylation activates the mouse mammary tumor virus promoter and remodels its nucleosome structure. Proc. Natl. Acad. Sci. USA 93: 10741–10746.
  • Baxevanis, A. D., G. Arents, E. N. Moudrianakis, and D. Landsman 1995. A variety of DNA-binding and multimeric proteins contein the histone fold motif. Nucleic Acids Res. 23: 2685–2691.
  • Braunstein, M., A. B. Rose, S. G. Holmes, C. D. Allis, and J. R. Broach 1993. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7: 592–604.
  • Brownell, J., J. Zhou, T. Ranalli, R. Kobayashi, D. Edmondson, S. Roth, and C. D. Allis 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851.
  • Bucher, P. 1990. Weight matrix description of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J. Mol. Biol. 212: 563–579.
  • Candau, R., J. X. Zhou, C. D. Allis, and S. L. Berger 1997. Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo. EMBO J. 16: 555–565.
  • Chomczynski, P., and N. Sacchi Single-step RNA isolation from cultured cells or tissue Current protocols in molecular biology In: Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl119964.2.2–4.2.3John Wiley & Sons, Inc., New York, N.Y.
  • Dorn, A., J. Bollekens, A. Staub, C. Benoist, and D. Mathis 1987. A multiplicity of CCAAT box-binding proteins. Cell 50: 863–872.
  • Frommel, T. O., J. S. Coon, T. Tsuruo, and I. B. Roninson 1993. Variable effects of sodium butyrate on the expression and function of the MDR1 (P-glycoprotein) gene in colon carcinoma cell lines. Int. J. Cancer 55: 297–302.
  • Germann, U. A., I. Pastan, and M. Gottesman 1993. P-glycoproteins: mediators of multidrug resistance. Semin. Cell Biol. 4: 63–76.
  • Gu, W., and R. G. Roeder 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.
  • Hassig, C. A., T. C. Fleischer, A. N. Billin, S. L. Schreiber, and D. E. Ayer 1997. Histone deacetylase activity is required for full transcriptional repression by msin3a. Cell 89: 341–347.
  • Hebbes, T. R., A. L. Clayton, A. W. Thorne, and C. Crane-Robinson 1994. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J. 13: 1823–1830.
  • Heinzel, T., R. M. Lavinsky, T.-M. Mullen, M. Soderstrom, C. D. Laherty, J. Torchia, W.-M. Yang, G. Brard, S. D. Ngo, J. R. Davie, E. Seto, R. N. Eisenman, D. W. Rose, C. K. Glass, and M. G. Rosenfeld 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387: 43–48.
  • Ince, T. A., and K. W. Scotto 1995. A conserved downstream element defines a new class of RNA polymerase II promoters. J. Biol. Chem. 270: 30249–30252.
  • Ince, T. A., and K. W. Scotto 1996. Stable transfection of the P-glycoprotein promoter reproduces the endogenous overexpression phenotype: the role of MED-1. Cancer Res. 56: 2021–2024.
  • Ince, T. A., and K. W. Scotto Transcriptional regulation of multidrug resistant genes Encyclopedia of cancer In: Bertino, J. R.319971751–1764Academic Press, San Diego, Calif.
  • Jeppesen, P., and B. M. Turner 1993. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281–289.
  • Jin, S., and K. W. Scotto. Unpublished data.
  • Kaufman, P. D., R. Kobayashi, N. Kessler, and B. Stillman 1995. The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 81: 1105–1114.
  • Laherty, C. D., W.-M. Yang, J.-M. Sun, J. R. Davie, E. Seto, and R. N. Eisenman 1997. Histone deacetylases associated with the mSin3 corepressor mediate Mad transcriptional repression. Cell 89: 349–356.
  • Lee, K. A., and M. R. Green 1990. Small-scale preparation of extracts from radiolabeled cells efficient in pre-mRNA splicing. Methods Enzymol. 181: 20–30.
  • Linhoff, M. W., K. L. Wright, and J. P.-Y. Ting 1997. CCAAT-binding factor NF-Y and RFX are required for in vivo assembly of a nucleoprotein complex that spans 250 base pairs: the invariant chain promoter as a model. Mol. Cell. Biol. 17: 4589–4596.
  • Maity, S. N., S. Sinha, E. C. Ruteshouser, and B. de Crombrugghe 1992. Three different polypeptides are necessary for DNA binding of mammalian heteromeric CCAAT binding factor. J. Biol. Chem. 267: 16574–16580.
  • Mantovani, R., U. Pessara, F. Tronche, X.-Y. Li, A.-M. Knapp, J.-L. Pasquali, C. Benoist, and D. Mathis 1992. Monoclonal antibodies to NF-Y define its function in MHC class II and albumin gene transcription. EMBO J. 11: 3315–3322.
  • Mantovani, R., X.-Y. Li, U. Pessara, R. H. van Huisjduijnen, C. Benoist, and D. Mathis 1994. Dominant negative analogs of NF-YA. J. Biol. Chem. 269: 20340–20346.
  • Mickley, L. A., S. E. Bates, N. D. Richert, S. Currier, S. Tanaka, F. Foss, N. Rosen, and A. T. Fojo 1989. Modulation of the expression of a multidrug resistance gene (mdr-1/P-glycoprotein) by differentiating agents. J. Biol. Chem. 264: 18031–18040.
  • Miyazaki, M., K. Kohno, T. Uchiumi, H. Tanimura, K.-I. Matsuo, M. Nasu, and M. Kuwano 1992. Activation of human multidrug resistance-1 gene promoter in response to heat shock stress. Biochem. Biophys. Res. Commun. 187: 677–684.
  • Mizzen, C. A., X. J. Yang, T. Kokubo, J. E. Brownell, A. J. Bannister, T. Owen-Hughes, J. Workman, L. Wang, S. L. Berger, T. Kouzarides, Y. Nakatani, and C. D. Allis 1996. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87: 1261–1270.
  • Morrow, C. S., M. Nakagawa, M. E. Goldsmith, M. J. Madden, and K. H. Cowan 1994. Reversible transcriptional activation of mdr1 by sodium butyrate treatment of human colon cancer cells. J. Biol. Chem. 269: 10739–10746.
  • Nagy, L., H.-Y. Kao, D. Chakravarti, R. J. Lin, C. A. Hassig, D. E. Ayer, S. Schreiber, and R. E. Evans 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A and histone deacetylase. Cell 89: 373–380.
  • Nakshatri, H., P. Bhat-Nakshatri, and R. A. Currie 1996. Subunit association and DNA binding activity of the heterotrimeric transcription factor NF-Y is regulated by cellular redox. J. Biol. Chem. 271: 28784–28791.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and Y. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959.
  • Ohga, T., K. Koike, M. Ono, Y. Makino, Y. Itagaki, M. Tanimoto, M. Kuwano, and K. Kohno 1996. Role of the human Y box-binding protein YB1 in cellular sensitivity to the DNA-damaging agents cisplatin, mitomycin C, and ultraviolet light. Cancer Res. 56: 4224–4228.
  • Promega Corporation. WI. Protocols and applications guide3rd ed.199647–48Promega Corp., Madison, Wis.
  • Puri, P. L., V. Sartorelli, X.-J. Yang, Y. Hamamori, V. V. Ogryzko, B. Howard, L. Kedes, J. Y. J. Wang, A. Graessmann, Y. Nakatani, and M. Levrero 1997. Differential roles of p300 and pCAF acetyltransferases in muscle differentiation. Mol. Cell 1: 35–45.
  • Sinha, S., S. N. Maity, J. Lu, and B. de Crombrugghe 1995. Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc. Natl. Acad. Sci. USA 92: 1624–1628.
  • Sundseth, R., G. MacDonald, J. Ting, and A. C. King 1997. DNA elements recognizing NF-Y and Sp-1 regulate the human multidrug-resistance gene promoter. Mol. Pharmacol. 51: 963–971.
  • Taunton, J., C. A. Hassig, and S. L. Schreiber 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272: 408–411.
  • Torchia, J., D. W. Rose, J. Inostroza, Y. Kamel, S. Westin, C. K. Glass, and M. G. Rosenfeld 1997. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387: 677–684.
  • Van Lint, C., S. Emiliani, and E. Verdin 1996. Transcriptional activation and chromatin remodeling of the HIV-1 promoter. EMBO J. 15: 1112–1120.
  • Wang, L., C. Mizzen, C. Ying, R. Candau, N. Barlev, J. Brownell, D. Allis, and S. L. Berger 1997. Histone acetyltransferase activity is conserved between yeast and human GCN5 and is required for complementation of growth and transcriptional activation. Mol. Cell. Biol. 17: 519–527.
  • Wolffe, A. P., and D. Pruss 1996. Targeting chromatin disruption: transcription regulators that acetylate histones. Cell 84: 817–819.
  • Wolffe, A. P. 1997. Sinful repression. Nature 387: 16–17.
  • Yang, X.-J., V. V. Ogryzko, J.-I. Nishikawa, B. H. Howard, and Y. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382: 319–324.
  • Yoshida, M., M. Kijima, M. Akita, and T. Beppu 1990. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265: 17174–17179.
  • Yoshida, M., S. Horinouchi, and T. Beppu 1995. Trichostatin A and Tripoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17: 423–430.
  • Zhang, Y., R. Iratni, H. Erdjument-Bromage, P. Tempst, and D. Reinberg 1997. Histone deacetylase and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89: 357–364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.