18
Views
59
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Transcription Factor Pip Can Enhance DNA Binding by E47, Leading to Transcriptional Synergy Involving Multiple Protein Domains

&
Pages 4639-4650 | Received 26 Nov 1997, Accepted 11 May 1998, Published online: 27 Mar 2023

REFERENCES

  • Atchison, M. L., and R. P. Perry 1987. The role of the κ enhancer and its binding factor NF-κB in the developmental regulation of κ gene transcription. Cell 48: 121–127.
  • Bain, G., S. Gruenwald, and C. Murre 1993. E2A and E2-2 are subunits of B-cell-specific E2-box DNA-binding proteins. Mol. Cell. Biol. 13: 3522–3529.
  • Bain, G., E. C. R. Maandag, D. J. Izon, D. Amsen, A. M. Kruisbeek, B. C. Weintraub, I. Krop, M. S. Schlissel, A. J. Feeney, M. van Roon, M. van der Valk, H. P. J. te Riele, A. Berns, and C. Murre 1994. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79: 885–892.
  • Benezra, R. 1994. An intermolecular disulfide bond stabilizes E2A homodimers and is required for DNA binding at physiological temperatures. Cell 79: 1057–1067.
  • Benezra, R., R. L. Davis, D. Lockshon, D. L. Turner, and H. Weintraub 1990. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61: 49–59.
  • Bovolenta, C., P. H. Drigger, M. S. Marks, J. A. Medin, A. D. Politis, S. N. Vogel, D. E. Levy, K. Sakaguchi, E. Appella, J. E. Coligan, and K. Ozato 1994. Molecular interactions between interferon consensus sequence binding protein and members of the interferon regulatory factor family. Proc. Natl. Acad. Sci. USA 91: 5046–5050.
  • Brass, A. L., E. Kehrli, C. F. Eisenbeis, U. Storb, and H. Singh 1996. Pip, a lymphoid-restricted IRF, contains a regulatory domain that is important for autoinhibition and ternary complex formation with the Ets factor PU.1. Genes Dev. 10: 2335–2347.
  • Bushmeyer, S., K. Park, and M. L. Atchison 1995. Characterization of functional domains within the multifunctional transcription factor, YY1. J. Biol. Chem. 270: 30213–30220.
  • Christy, B. A., L. K. Sanders, L. F. Lau, N. G. Copeland, N. A. Jenkins, and D. Nathans 1991. An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene. Proc. Natl. Acad. Sci. USA 88: 1815–1819.
  • Desiderio, S. 1995. Transcription factors controlling B-cell development. Curr. Biol. 5: 605–608.
  • Eckner, R., T.-P. Yao, E. Oldread, and D. M. Livingston 1996. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10: 2478–2490.
  • Eisenbeis, C. F., H. Singh, and U. Storb 1995. Pip, a novel IRF family member, is a lymphoid-specific PU.1-dependent transcriptional activator. Genes Dev. 9: 1377–1387.
  • Eisenbeis, C. F., H. Singh, and U. Storb 1993. PU.1 is a component of a multiprotein complex which binds an essential site in the murine immunoglobulin λ2-4 enhancer. Mol. Cell. Biol. 13: 6452–6461.
  • Fu, X., D. S. Kessler, S. A. Veals, D. E. Levy, Darnell J. E., Jr. 1990. ISGF3, the transcriptional activator induced by interferon alpha, consists of multiple interacting polypeptide chains. Proc. Natl. Acad. Sci. USA 87: 8555–8559.
  • Fujita, T., Y. Kimura, M. Miyamoto, L. Barsoumian, and T. Taniguchi 1989. Induction of endogenous IFN-α and IFN-β genes by a regulatory transcription factor, IRF-1. Nature 337: 270–272.
  • Fulton, R., and B. Van Ness 1993. Kappa immunoglobulin promoters and enhancers display developmentally controlled interactions. Nucleic Acids Res. 21: 4941–4947.
  • Fulton, R., and B. Van Ness 1994. Selective synergy of immunoglobulin enhancer elements in B-cell development: a characteristic of kappa light chain enhancers, but not heavy chain enhancers. Nucleic Acids Res. 22: 4216–4223.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2: 1044–1051.
  • Graham, F. L., and A. J. Van der Eb 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52: 456–467.
  • Grossman, A., H.-W. Mittrucker, J. Nicholl, A. Suzuki, S. Chung, L. Antonio, S. Suggs, G. R. Sutherland, D. P. Siderovski, and T. W. Mak 1996. Cloning of human lymphocyte-specific interferon regulatory factor (hLSIRF/hIRF4) and mapping of the gene to 6p23-p25. Genomics 37: 229–233.
  • Grueneberg, D. A., R. W. Henry, B. A., C. D. Novina, V. Cheriyath, A. L. Roy, and M. Gilman 1997. A multifunctional DNA-binding protein that promotes the formation of serum response factor/homeodomain complexes: identity to TFII-I. Genes Dev. 11: 2482–2493.
  • Grueneberg, D. A., S. Natesan, C. Alexandre, and M. Z. Gilman 1992. Human and drosophila homeodomain proteins that enhance the DNA-binding activity of serum response factor. Science 257: 1089–1095.
  • Harada, H., T. Fujita, M. Miyamoto, Y. Kimura, M. Maruyama, A. Furia, T. Miyata, and T. Taniguchi 1989. Structurally similar but functionally distinct factors IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell 58: 729–739.
  • Harada, H., K. Willison, J. Sakakibara, M. Miyamoto, T. Fujita, and T. Taniguchi 1990. Absence of the type 1 IFN system in EC cells: transcriptional activator (IRF-1) and repressor (IRF-2) genes are developmentally regulated. Cell 63: 303–312.
  • Henthorn, P., M. Kiledjian, and T. Kadesch 1990. Two distinct transcription factors that bind the immunoglobulin enhancer μE5/κE2 motif. Science 247: 467–470.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease 1989. Site directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51–59.
  • Hu, J.-S., E. N. Olson, and R. E. Kingston 1992. HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol. Cell. Biol. 12: 1031–1042.
  • Johnson, J. D., W. Zhang, A. Rudnick, W. J. Rutter, and M. S. German 1997. Transcriptional synergy between LIM-homeodomain proteins and basic helix-loop-helix proteins: the LIMZ domain determines specificity. Mol. Cell. Biol. 17: 3488–3496.
  • Kaelin, W. G. J., D. C. Pallas, J. A. DeCaprio, F. J. Kaye, and D. M. Livingston 1991. Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene product. Cell 64: 521–532.
  • Kessler, D. S., S. A. Veals, X.-Y. Fu, and D. E. Levy 1990. IFN-α regulates nuclear translocation and DNA-binding activity of ISGF3, a multimeric transcriptional activator. Genes Dev. 4: 1753–1765.
  • Lassar, A. B., R. L. Davis, W. E. Wright, T. Kadesch, C. Murre, A. Voronova, D. Baltimore, and H. Weintraub 1991. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like protein in vivo. Cell 66: 305–315.
  • Lenardo, M., J. W. Pierce, and D. Baltimore 1987. Protein binding sites in Ig gene enhancers determine transcriptional activity and inducibility. Science 236: 1573–1577.
  • Matsuyama, T., A. Grossman, H.-W. Mittrucker, D. P. Siderovski, F. Kiefer, T. Kawakami, C. D. Richardson, T. Taniguchi, S. K. Yoshinaga, and T. W. Mak 1995. Molecular cloning of LSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Res. 23: 2127–2136.
  • Meyer, K. B., and M. S. Neuberger 1989. The immunoglobulin κ locus contains a second, stronger B-cell-specific enhancer which is located downstream of the constant region. EMBO J. 8: 1959–1964.
  • Mittrucker, H.-W., T. Matsuyama, A. Grossman, T. M. Kundig, J. Potter, A. Shahinian, A. Wakeham, B. Patterson, P. S. Ohashi, and T. W. Mak 1997. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275: 540–543.
  • Miyamoto, M., T. Fujita, Y. Kimura, M. Maruyama, H. Harada, Y. Sudo, T. Miyata, and T. Taniguchi 1988. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-beta gene regulatory elements. Cell 54: 903–913.
  • Murre, C., G. Bain, M. A. V. Dijk, I. Engel, B. A. Furnari, M. E. Massari, J. R. Matthews, M. W. Quong, R. R. Rivera, and M. H. Stuiver 1994. Structure and function of helix-loop-helix proteins. Biochim. Biophys. Acta 1218: 129–135.
  • Murre, C., P. S. McCaw, and D. Baltimore 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56: 777–783.
  • Murre, C., P. S. McCaw, H. Vaessin, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. N. Buskin, S. D. Hauschka, A. B. Lassar, H. Weintraub, and D. Baltimore 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58: 537–544.
  • Murre, C., A. Voronova, and D. Baltimore 1991. B-cell- and myocyte-specific E2-box-binding factors contain E12/E47-like subunits. Mol. Cell. Biol. 11: 1156–1160.
  • Nelson, B., G. Tian, B. Erman, J. Gregoire, R. Maki, B. Graves, and R. Sen 1993. Regulation of lymphoid-specific immunoglobulin mu heavy chain enhancer by ETS-domain proteins. Science 261: 82–86.
  • Nelson, N., M. Marks, P. Driggers, and K. Ozato 1993. Interferon consensus sequence-binding protein, a member of the interferon regulatory factor family, suppresses interferon-induced gene transcription. Mol. Cell. Biol. 13: 588–599.
  • Olson, E. N. 1994. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 8: 1–8.
  • Patwardhan, S., A. Gashler, M. G. Siegel, L. C. Chang, L. J. Joseph, T. B. Shows, M. M. LeBeau, and V. P. Sukhatme 1991. EGR3, a novel member of the Egr family of genes encoding immediate-early transcription factors. Oncogene 6: 917–928.
  • Pongubala, J. M. R., and M. L. Atchison 1995. Activating transcription factor 1 and cyclic AMP response element modulator can modulate the activity of the immunoglobulin κ 3′ enhancer. J. Biol. Chem. 270: 10304–10313.
  • Pongubala, J. M. R., and M. L. Atchison 1991. Functional characterization of the developmentally controlled immunoglobulin kappa 3′ enhancer: regulation by Id, a repressor of helix-loop-helix transcription factors. Mol. Cell. Biol. 11: 1040–1047.
  • Pongubala, J. M. R., and M. L. Atchison 1997. PU.1 can participate in an active enhancer complex without its transcriptional activation domain. Proc. Natl. Acad. Sci. USA 94: 127–132.
  • Pongubala, J. M. R., S. Nagulapalli, M. J. Klemsz, S. R. McKercher, R. A. Maki, and M. L. Atchison 1992. PU.1 recruits a second nuclear factor to a site important for immunoglobulin κ 3′ enhancer activity. Mol. Cell. Biol. 12: 368–378.
  • Pongubala, J. M. R., C. Van Beveren, S. Nagulapalli, M. J. Klemsz, S. R. McKercher, R. A. Maki, and M. L. Atchison 1993. Effect of PU.1 phosphorylation on interaction with NF-EM5 and transcriptional activation. Science 259: 1622–1625.
  • Reis, L. F. L., H. Harada, J. D. Wolchok, T. Taniguchi, and J. Vilcek 1992. Critical role of a common transcription factor IRF-1, in the regulation of IFN-beta and IFN-inducible genes. EMBO J. 11: 185–193.
  • Riechmann, V., I. van Cruchten, and F. Sablitsky 1994. The expression pattern of Id4, a novel dominant negative helix-loop-helix protein, is distinct from Id1, Id2, and Id3. Nucleic Acids Res. 22: 749–755.
  • Rivera, R. R., M. H. Stuiver, R. Steenbergen, and C. Murre 1993. Ets proteins: new factors that regulate immunoglobulin heavy chain gene expression. Mol. Cell. Biol. 13: 7163–7169.
  • Schreiber, E., P. Matthias, M. M. Muller, and W. Schaffner 1989. Rapid detection of octamer binding proteins with “mini-extracts”, prepared from small number of cells. Nucleic Acids Res. 17: 6419.
  • Shaknovich, R., G. Shue, and D. S. Kohtz 1992. Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine HSP90 (HSP84). Mol. Cell. Biol. 12: 5059–5068.
  • Sharf, R., A. Azriel, F. Lejbkowitcz, S. S. Winograd, R. Ehrlich, and B.-Z. Levi 1995. Functional domain analysis of interferon consensus sequence binding protein (ICSBP) and its association with interferon regulatory factors. J. Biol. Chem. 270: 13063–13069.
  • Sharf, R., D. Meraro, A. Azriel, A. M. Thornton, K. Ozato, E. F. Petricoin, A. D. Larner, F. Schaper, H. Hauser, and B.-Z. Levi 1997. Phosphorylation events modulate the ability of interferon consensus sequence binding protein to interact with interferon regulatory factors. J. Biol. Chem. 272: 9785–9792.
  • Shen, C.-P., and T. Kadesch 1995. B-cell-specific DNA binding by an E47 homodimer. Mol. Cell. Biol. 15: 4518–4524.
  • Sloan, S. R., C.-P. Shen, R. McCarrick-Walmsley, and T. Kadesch 1996. Phosphorylation of E47 as a potential determinant of B-cell-specific activity. Mol. Cell. Biol. 16: 6900–6908.
  • Sun, X.-H. 1994. Constitutive expression of the Id1 gene impairs mouse B cell development. Cell 79: 893–900.
  • Sun, X.-H., N. G. Copeland, N. A. Jenkins, and D. Baltimore 1991. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol. Cell. Biol. 11: 5603–5611.
  • Weintraub, H. 1993. The myoD family and myogenesis: redundancy, networks, and thresholds. Cell 75: 1241–1244.
  • Wilson, R. B., M. Kiledjian, C.-P. Shen, R. Benezra, P. Zwollo, S. M. Dymecki, S. V. Desiderio, and T. Kadesch 1991. Repression of immunoglobulin enhancers by the helix-loop-helix protein Id: implications for B-lymphoid-cell development. Mol. Cell. Biol. 11: 6185–6191.
  • Yamagata, T., J. Nishida, T. Tanaka, R. Sakai, K. Mitani, M. Yoshida, T. Taniguchi, Y. Yazaki, and H. Hirai 1996. A novel interferon regulatory factor family transcription factor, ICSAT/Pip/LSIRF, that negatively regulates the activity of interferon-regulated genes. Mol. Cell. Biol. 16: 1283–1294.
  • Zhang, L., and J. S. Pagano 1997. IRF-7, a new interferon regulatory factor associated with Epstein-Barr virus latency. Mol. Cell. Biol. 17: 5748–5757.
  • Zhuang, Y., P. Cheng, and H. Weintraub 1996. B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol. Cell. Biol. 16: 2898–2905.
  • Zhuang, Y., P. Soriano, and H. Weintraub 1994. The helix-loop-helix gene E2A is required for B cell formation. Cell 79: 875–884.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.