3
Views
48
CrossRef citations to date
0
Altmetric
Cell Growth and Development

CDC42 and FGD1 Cause Distinct Signaling and Transforming Activities

, , &
Pages 4689-4697 | Received 09 Jan 1998, Accepted 29 May 1998, Published online: 27 Mar 2023

REFERENCES

  • Aarskog, D. 1970. A familial syndrome of short stature associated with facial dysplasia and genital anomalies. J. Pediatr. 77: 856–861.
  • Albanese, C., J. Johnson, G. Watanabe, N. Eklund, D. Vu, A. Arnold, and R. G. Pestell 1996. Transforming p21-Ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem. 270: 23589–23597.
  • Aspenström, P., U. Lindberg, and A. Hall 1996. Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome. Curr. Biol. 6: 70–75.
  • Boguski, M. S., and F. McCormick 1993. Proteins regulating Ras and its relatives. Nature 366: 643–654.
  • Bourne, H. R., D. A. Sanders, and F. McCormick 1990. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–126.
  • Cavigelli, M., F. Dolfi, F.-X. Claret, and M. Karin 1995. Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J. 14: 5957–5964.
  • Cerione, R. A., and Y. Zheng 1996. The Dbl family of oncogenes. Curr. Opin. Cell Biol. 8: 216–222.
  • Chevallier-Multon, M.-C., F. Schweighoffer, I. Barlat, N. Baudouy, I. Fath, M. Duchesne, and B. Tocqué 1993. Saccharomyces cerevisiae CDC25 (1028-1589) is a guanine nucleotide releasing factor for mammalian Ras proteins and is oncogenic in NIH3T3 cells. J. Biol. Chem. 268: 11113–11118.
  • Clark, G. J., A. D. Cox, S. M. Graham, and C. J. Der 1995. Biological assays for Ras transformation. Methods Enzymol. 255: 395–412.
  • Coso, O. A., M. Chiariello, J.-C. Yu, H. Teramoto, P. Crespo, N. Xu, T. Miki, and J. S. Gutkind 1995. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81: 1137–1146.
  • Gille, H., M. Kortenjann, O. Thomae, C. Moomaw, C. Slaughter, M. H. Cobb, and P. E. Shaw 1995. ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14: 951–962.
  • Gille, H., A. D. Sharrocks, and P. E. Shaw 1992. Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 358: 414–417.
  • Gille, H., T. Strahl, and P. E. Shaw 1995. Activation of ternary complex factor Elk-1 by stress-activated protein kinases. Curr. Biol. 5: 1191–1200.
  • Glaven, J. A., I. P. Whitehead, T. Nomanbhoy, R. Kay, and R. A. Cerione 1996. Lfc and Lsc oncoproteins represent two new guanine nucleotide exchange factors for the Rho GTP-binding protein. J. Biol. Chem. 271: 27374–27381.
  • Gorlin, R. J., M. M. Cohen, and L. S. Levin 1990. Syndromes of the head and neck3rd ed. Oxford University Press, New York, N.Y.
  • Gorski, J. L. In L. Jameson (ed.), Principles of molecular medicine, in press. Humana Press, New York, N.Y.
  • Hall, B. K., and T. Miyake 1992. The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat. Embryol. 186: 107–124.
  • Hauser, C. A., J. K. Westwick, and L. A. Quilliam 1995. Ras-mediated transcription activation: analysis by transient cotransfection assays. Methods Enzymol. 255: 412–426.
  • Hill, C. S., J. Wynne, and R. Treisman 1995. The Rho family GTPases RhoA, Rac1 and Cdc42Hs regulate transcriptional activation by SRF. Cell 81: 1159–1170.
  • Horii, Y., J. F. Beeler, K. Sakaguchi, M. Tachibana, and T. Miki 1994. A novel oncogene, ost, encodes a guanine nucleotide exchange factor that potentially links Rho and Rac signaling pathways. EMBO J. 13: 4776–4786.
  • Janknecht, R., W. H. Ernst, V. Pingoud, and A. Nordheim 1993. Activation of ternary complex factor Elk-1 by MAP kinases. EMBO J. 12: 5097–5104.
  • Khosravi-Far, R., M. Chrzanowska-Wodnicka, P. A. Solski, A. Eva, K. Burridge, and C. J. Der 1994. Vav and Dbl mediate transformation via Ras-independent mitogen activated protein kinase activation. Mol. Cell. Biol. 14: 6848–6857.
  • Khosravi-Far, R., P. A. Solski, G. J. Clark, M. S. Kinch, and C. J. Der 1995. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15: 6443–6453.
  • Khosravi-Far, R., M. A. White, J. K. Westwick, P. A. Solski, M. Chrzanowska-Wodnicka, L. Van Aeist, M. H. Wigler, and C. J. Der 1996. Oncogenic Ras activation of Raf/MAP kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol. Cell. Biol. 16: 3923–3933.
  • King, J. A., P. C. Marker, K. J. Seung, and D. M. Kingsley 1994. BMP5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev. Biol. 166: 112–122.
  • Kozma, R., S. Ahmed, A. Best, and L. Lim 1995. The Ras-related proteins Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15: 1942–1952.
  • Lebowitz, P. F., W. Du, and G. C. Prendergast 1997. Prenylation of RhoB is required for its cell transforming function but not its ability to activate serum response element-dependent transcription. J. Biol. Chem. 272: 16093–16095.
  • Lin, R., S. Bagrodia, R. Cerione, and D. Manor 1997. A novel Cdc42Hs mutant induces cellular transformation. Curr. Biol. 7: 794–797.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Marais, R., J. Wynne, and R. Treisman 1993. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73: 381–393.
  • Miki, T., C. L. Smith, J. E. Long, A. Eva, and T. P. Fleming 1993. Oncogene ect2 is related to regulators of small GTP-binding proteins. Nature 362: 462–465.
  • Minden, A., A. Lin, F.-X. Claret, A. Abo, and M. Karin 1995. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81: 1147–1157.
  • Nobes, C. D., and A. Hall 1995. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81: 53–62.
  • Oldham, S. M., G. J. Clark, L. M. Gangarosa, Coffey R. J., Jr., and C. J. Der 1996. Activation of the Raf-1/MAP kinase cascade is not sufficient for Ras transformation of RIE-1 epithelial cells. Proc. Natl. Acad. Sci. USA 93: 6924–6928.
  • Olson, M. F., A. Ashworth, and A. Hall 1995. An essential role for Rho, Rac and Cdc42 GTPases in cell cycle progression through G1. Science 269: 1270–1272.
  • Olson, M. F., N. G. Pasteris, J. L. Gorski, and A. Hall 1996. Faciogenital dysplasia protein (FGD1) and Vav, two related proteins required for normal embryonic development, are upstream regulators of Rho GTPases. Curr. Biol. 6: 1628–1633.
  • Pasteris, N. G., J. M. Buckler, A. B. Cadle, and J. L. Gorski 1997. Genomic organization of the faciogenital dysplasia (FGD1; Aarskog-Scott syndrome) gene. Genomics 43: 390–394.
  • Pasteris, N. G., M. Cadle, L. J. Logie, M. E. Porteous, C. E. Schwartz, R. E. Stevenson, T. W. Glover, R. S. Wilroy, and J. L. Gorski 1994. Isolation and characterization of the faciogenital dysplasia (Aarskog-Scott syndrome) gene: a putative Rho/Rac guanine nucleotide exchange factor. Cell 79: 669–678.
  • Prendergast, G. C., R. Khosravi-Far, P. A. Solski, H. Kurzawa, P. F. Lebowitz, and C. J. Der 1995. Critical role of RhoB in cell transformation by oncogenic Ras. Oncogene 10: 2289–2296.
  • Qiu, R.-G., A. Abo, F. McCormick, and M. Symons 1997. Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Mol. Cell. Biol. 17: 3449–3458.
  • Qiu, R.-G., J. Chen, D. Kirn, F. McCormick, and M. Symons 1995. An essential role for Rac in Ras transformation. Nature 374: 457–459.
  • Qiu, R.-G., J. Chen, F. McCormick, and M. Symons 1995. A role for Rho in Ras transformation. Proc. Natl. Acad. Sci. USA 92: 11781–11785.
  • Quilliam, L. A., S. Y. Huff, K. M. Rabun, W. Wei, D. Broek, and C. J. Der 1994. Membrane-targeting potentiates CDC25 and SOS activation of Ras transformation. Proc. Natl. Acad. Sci. USA 91: 8512–8516.
  • Quilliam, L. A., K. Kato, K. M. Rabun, M. M. Hisaka, S. Y. Huff, S. Campbell-Burk, and C. J. Der 1994. Identification of residues critical for Ras(17N) growth-inhibitory phenotype and for Ras interaction with guanine nucleotide exchange factors. Mol. Cell. Biol. 14: 1113–1121.
  • Raingeaud, J., A. J. Whitmarsh, T. Barrett, B. Dérijard, and R. J. Davis 1996. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell. Biol. 16: 1247–1255.
  • Ridley, A. J., and A. Hall 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389–399.
  • Ridley, A. J., H. F. Paterson, C. L. Johnston, D. Diekmann, and A. Hall 1992. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70: 401–410.
  • Ron, D., M. Zannini, M. Lewis, R. B. Wickner, L. T. Hunt, G. Graziani, S. R. Tronick, S. A. Aaronson, and A. Eva 1991. A region of proto-dbl essential for its transforming activity shows sequence similarity to a yeast cell cycle gene, CDC24, and the human breakpoint cluster gene, bcr. New Biol. 3: 372–379.
  • Roux, P., C. Gauthier-Rouvière, S. Doucet-Brutin, and P. Fort 1997. The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells. Curr. Biol. 7: 629–637.
  • Storm, E. E., T. V. Huynh, N. G. Copeland, N. A. Jenkins, D. M. Kinsley, and S. Lee 1997. Limb alterations in brachypodism mice due to alterations in a new member of the TGF beta-superfamily. Nature 368: 639–43.
  • Su, B., E. Jacinto, M. Hibi, T. Kallunki, M. Karin, and Y. Ben-Neriah 1994. JNK is involved in signal integration during costimulation of T lymphocytes. Cell 77: 727–736.
  • Symons, M., J. M. J. Derry, B. Kariak, S. Jiang, V. Lemahieu, F. McCormick, U. Francke, and A. Abo 1996. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84: 723–734.
  • Vincent, S., and J. Settleman 1997. The PRK2 kinase is a potential effector target of both Rho and Rac GTPases and regulates actin cytoskeletal organization. Mol. Cell. Biol. 17: 2247–2256.
  • Westwick, J. K., and D. A. Brenner 1995. Methods for analyzing c-Jun kinase. Methods Enzymol. 255: 342–360.
  • Westwick, J. K., Q. T. Lambert, G. J. Clark, M. Symons, L. Van Aelst, R. G. Pestell, and C. J. Der 1997. Rac regulation of transformation, gene expression and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17: 1324–1335.
  • Westwick, J. K., R. J. Lee, Q. T. Lambert, M. Symons, R. G. Pestell, C. J. Der, and I. P. Whitehead. Transforming potential of Dbl family proteins correlates with transcription from the cyclin D1 promoter but not with activation of Jun-NH2-terminal kinase, p38/Mpk2, serum response factor or c-Jun. J. Biol. Chem., in press.
  • Whitehead, I., H. Kirk, and R. Kay 1995. Retroviral transduction and oncogenic selection of a cDNA encoding Dbs, a homolog of the Dbl guanine nucleotide exchange factor. Oncogene 10: 713–721.
  • Whitehead, I., H. Kirk, C. Tognon, G. Trigo-Gonzalez, and R. Kay 1995. Expression cloning of lfc, a novel oncogene with structural similarities to guanine nucleotide exchange factors and to the regulatory region of protein kinase C. J. Biol. Chem. 271: 18388–18395.
  • Whitehead, I. P., S. Campbell, K. L. Rossman, and C. J. Der 1997. Dbl family proteins. Biochim. Biophys. Acta 1332: F1–F23.
  • Whitehead, I. P., R. Khosravi-Far, H. Kirk, G. Trigo-Gonzalez, C. J. Der, and R. Kay 1996. Expression cloning of lsc, a novel oncogene with structural similarities to the Dbl family of guanine nucleotide exchange factors. J. Biol. Chem. 271: 18643–18650.
  • Whitmarsh, A. J., P. Shore, A. D. Sharrocks, and R. J. Davis 1995. Integration of MAP kinase signal transduction pathways at the serum response element. Science 269: 403–407.
  • Whitmarsh, A. J., S.-H. Yang, M. S.-S. Su, A. D. Sharrocks, and R. J. Davis 1997. Role of p38 and JNK mitogen-activated protein kinases in the activation of ternary complex factors. Mol. Cell. Biol. 17: 2360–2371.
  • Zhang, S., J. Han, M. A. Sells, J. Chernoff, U. G. Knaus, R. J. Ulevitch, and G. M. Bokoch 1995. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J. Biol. Chem. 270: 23934–23936.
  • Zheng, Y., D. J. Fischer, M. F. Santos, G. Tigyi, N. G. Pasteris, J. L. Gorski, and Y. Xu 1996. The faciogenital dysplasia gene product FGD1 functions as a Cdc42Hs-specific guanine-nucleotide exchange factor. J. Biol. Chem. 271: 33169–33172.
  • Zheng, Y., D. Zangrilli, R. A. Cerione, and A. Eva 1996. The pleckstrin homology domain mediates transformation by oncogenic Dbl through specific intracellular targeting. J. Biol. Chem. 271: 19017–19020.
  • Zinck, R., M. A. Cahill, M. Kracht, C. Sachsenmaier, R. A. Hipskind, and A. Nordheim 1995. Protein synthesis inhibitors reveal differential regulation of mitogen-activated protein kinase and stress-activated protein kinase pathways that converge on Elk-1. Mol. Cell. Biol. 15: 4930–4938.
  • Zohn, I. E., S. L. Campbell, R. Khosravi-Far, K. L. Rossman, and C. J. Der. Rho family proteins and Ras transformation: the Rhoad least traveled gets congested. Oncogene, in press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.