17
Views
41
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Nuclear Proteins Nut1p and Nut2p Cooperate To Negatively Regulate a Swi4p-Dependent lacZ Reporter Gene in Saccharomyces cerevisiae

&
Pages 4707-4718 | Received 25 Feb 1998, Accepted 14 May 1998, Published online: 27 Mar 2023

REFERENCES

  • Alani, E., L. Cao, and N. Kleckner 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116: 541–545.
  • Almer, A., H. Rudolph, A. Hinnen, and W. Hörz 1986. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5: 2689–2696.
  • Andrews, B. J., and I. Herskowitz 1989. Identification of a DNA binding factor involved in cell-cycle control of the yeast HO gene. Cell 57: 21–29.
  • Andrews, B. J., and I. Herskowitz 1989. The yeast Swi4 protein contains a motif present in developmental regulators and is part of a complex involved in cell-cycle-dependent transcription. Nature 342: 830–833.
  • Andrews, B. J., and L. A. Moore 1992. Interaction of the yeast Swi4 and Swi6 cell cycle regulatory proteins in vitro. Proc. Natl. Acad. Sci. USA 89: 11852–11856.
  • Bassett, D. E.Jr., M. S. Boguski, F. Spencer, R. Reeves, M. Goebl, and P. Hieter 1995. Comparative genomics, genome cross-referencing and XREFdb. Trends Genet. 11: 372–373.
  • Bobola, N., R. P. Jansen, T. H. Shin, and K. Nasmyth 1996. Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84: 699–709.
  • Bortvin, A., and F. Winston 1996. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272: 1473–1476.
  • Breeden, L., and K. Nasmyth 1987. Cell cycle control of the yeast HO gene: cis- and trans-acting regulators. Cell 48: 389–397.
  • Chen, S., West, R. W.Jr., S. L. Johnson, H. Gans, B. Kruger, and J. Ma 1993. TSF3, a global regulatory protein that silences transcription of yeast GAL genes, also mediates repression by α2 repressor and is identical to SIN4. Mol. Cell. Biol. 13: 831–840.
  • Clark-Adams, C. D., D. Norris, M. A. Osley, J. S. Fassler, and F. Winston 1988. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 2: 150–159.
  • Collart, M. A., and K. Struhl 1994. NOT1 (CDC39), NOT2 (CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev. 8: 525–537.
  • Covitz, P. A., W. Song, and A. P. Mitchell 1994. Requirement for RGR1 and SIN4 in RME1-dependent repression in Saccharomyces cerevisiae. Genetics 138: 577–586.
  • Cross, F. R., M. Hoek, J. D. McKinney, and A. H. Tinkelenberg 1994. Role of Swi4 in cell cycle regulation of CLN2 expression. Mol. Cell. Biol. 14: 4779–4787.
  • Denis, C. L., and T. Malvar 1990. The CCR4 gene from Saccharomyces cerevisiae is required for both nonfermentative and spt-mediated gene expression. Genetics 124: 283–291.
  • Draper, M. P., C. Salvadore, and C. L. Denis 1995. Identification of a mouse protein whose homolog in Saccharomyces cerevisiae is a component of the CCR4 transcriptional regulatory complex. Mol. Cell. Biol. 15: 3487–3495.
  • Eisenmann, D. M., C. Dollard, and F. Winston 1989. SPT15, the gene encoding the yeast TATA binding factor TFIID, is required for normal transcription initiation in vivo. Cell 58: 1183–1191.
  • Gustafsson, C. M., L. C. Myers, Y. Li, M. J. Redd, M. Lui, H. Erdjument-Bromage, P. Tempst, and R. D. Kornberg 1997. Identification of Rox3 as a component of mediator and RNA polymerase II holoenzyme. J. Biol. Chem. 272: 48–50.
  • Harashima, S., T. Mizuno, H. Mabuchi, S. Yoshimitsu, R. Ramesh, M. Hasebe, A. Tanaka, and Y. Oshima 1995. Mutations causing high basal level transcription that is independent of transcriptional activators but dependent on chromosomal position in Saccharomyces cerevisiae. Mol. Gen. Genet. 247: 716–725.
  • Hengartner, C. J., C. M. Thompson, J. Zhang, D. M. Chao, S. M. Liao, A. J. Koleske, S. Okamura, and R. A. Young 1995. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev. 9: 897–910.
  • Herschbach, B. M., and A. D. Johnson 1993. Transcriptional repression in eukaryotes. Annu. Rev. Cell Biol. 9: 479–509.
  • Horne, S., and R. K. Tabtiang. Unpublished data.
  • Hörz, W. Personal communication.
  • Jensen, R., Sprague, G. F.Jr., and I. Herskowitz 1983. Regulation of yeast mating-type interconversion: feedback control of HO gene expression by the mating-type locus. Proc. Natl. Acad. Sci. USA 80: 3035–3039.
  • Jiang, Y. W., P. R. Dohrmann, and D. J. Stillman 1995. Genetic and physical interactions between yeast RGR1 and SIN4 in chromatin organization and transcriptional regulation. Genetics 140: 47–54.
  • Jiang, Y. W., and D. J. Stillman 1992. Involvement of the SIN4 global transcriptional regulator in the chromatin structure of Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 4503–4514.
  • Kruger, W., C. L. Peterson, A. Sil, C. Coburn, G. Arents, E. N. Moudrianakis, and I. Herskowitz 1995. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 9: 2770–2779.
  • Kuchin, S., P. Yeghiayan, and M. Carlson 1995. Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast. Proc. Natl. Acad. Sci. USA 92: 4006–4010.
  • Kunkel, T. A. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82: 488–492.
  • Li, Y., S. Bjorklund, Y. W. Jiang, Y. J. Kim, W. S. Lane, D. J. Stillman, and R. D. Kornberg 1995. Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 92: 10864–10868.
  • Liao, S. M., J. Zhang, D. A. Jeffery, A. J. Koleske, C. M. Thompson, D. M. Chao, M. Viljoen, H. J. van Vuuren, and R. A. Young 1995. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374: 193–196.
  • Liu, H., V. Badarinarayana, D. C. Audino, J. Rappsilber, M. Mann, and C. L. Denis 1998. The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively. EMBO J. 17: 1096–1106.
  • Liu, H., J. H. Toyn, Y.-C. Chiang, M. P. Draper, L. H. Johnston, and C. L. Denis 1997. DBF2, a cell cycle-regulated protein kinase, is physically and functionally associated with the CCR4 transcriptional regulatory complex. EMBO J. 16: 5289–5298.
  • Lycan, D., G. Mikesell, M. Bunger, and L. Breeden 1994. Differential effects of Cdc68 on cell cycle-regulated promoters in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 7455–7465.
  • Macatee, T., Y. W. Jiang, D. J. Stillman, and S. Y. Roth 1997. Global alterations in chromatin accessibility associated with loss of SIN4 function. Nucleic Acids Res. 25: 1240–1247.
  • Muhlrad, D., R. Hunter, and R. Parker 1992. A rapid method for localized mutagenesis of yeast genes. Yeast 8: 79–82.
  • Nasmyth, K. 1983. Molecular analysis of a cell lineage. Nature 302: 670–676.
  • Nasmyth, K. 1985. At least 1400 base pairs of 5′-flanking DNA is required for the correct expression of the HO gene in yeast. Cell 42: 213–223.
  • Nasmyth, K. 1985. A repetitive DNA sequence that confers cell-cycle START (CDC28)-dependent transcription of the HO gene in yeast. Cell 42: 225–235.
  • Nasmyth, K. 1987. The determination of mother cell-specific mating type switching in yeast by a specific regulator of HO transcription. EMBO J. 6: 243–248.
  • Nasmyth, K., and L. Dirick 1991. The role of SW14 and SW16 in the activity of G1 cyclins in yeast. Cell 66: 995–1013.
  • Nasmyth, K., D. Stillman, and D. Kipling 1987. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell 48: 579–587.
  • Nonet, M. L., and R. A. Young 1989. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123: 715–724.
  • Ogas, J., B. J. Andrews, and I. Herskowitz 1991. Transcriptional activation of CLN1, CLN2, and a putative new G1 cycline (HCS26) by SWI4, a positive regulator of G1-specific transcription. Cell 66: 1015–1026.
  • Primig, M., S. Sockanathan, H. Auer, and K. Nasmyth 1992. Anatomy of a transcription factor important for the start of the cell cycle in Saccharomyces cerevisiae. Nature 358: 593–597.
  • Rose, M. D., and J. R. Broach Cloning genes by complementation in yeast Guide to yeast genetics and molecular biology In: Guthrie, C., and G. R. Fink1941991195–230Academic Press, Inc., San Diego, Calif.
  • Rose, M. D., F. Winston, and P. Hieter 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Rosenblum-Vos, L. S., L. Rhodes, Evangelista C. C., Jr., K. A. Boayke, and R. S. Zitomer 1991. The ROX3 gene encodes an essential nuclear protein involved in CYC7 gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 5639–5647.
  • Rothstein, R. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast Guide to yeast genetics and molecular biology In: Guthrie, C., and G. R. Fink1941991281–301Academic Press, Inc., San Diego, Calif.
  • Russell, D. W., R. Jensen, M. J. Zoller, J. Burke, B. Errede, M. Smith, and I. Herskowitz 1986. Structure of the Saccharomyces cerevisiae HO gene and analysis of its upstream regulatory region. Mol. Cell. Biol. 6: 4281–4294.
  • Sakai, A., Y. Shimizu, S. Kondou, T. Chibazakura, and F. Hishinuma 1990. Structure and molecular analysis of RGR1, a gene required for glucose repression of Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 4130–4138.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sidorova, J., and L. Breeden 1993. Analysis of the SWI4/SWI6 protein complex, which directs G1/S-specific transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 1069–1077.
  • Sikorski, R. S., and P. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Sil, A., and I. Herskowitz 1996. Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84: 711–722.
  • Song, W., I. Treich, N. Qian, S. Kuchin, and M. Carlson 1996. SSN genes that affect transcriptional repression in Saccharomyces cerevisiae encode SIN4, ROX3, and SRB proteins associated with RNA polymerase II. Mol. Cell. Biol. 16: 115–120.
  • Stern, M., R. Jensen, and I. Herskowitz 1984. Five SWI genes are required for expression of the HO gene in yeast. J. Mol. Biol. 178: 853–868.
  • Sternberg, P. W., M. J. Stern, I. Clark, and I. Herskowitz 1987. Activation of the yeast HO gene by release from multiple negative controls. Cell 48: 567–577.
  • Straka, C., and W. Hörz 1991. A functional role for nucleosomes in the repression of a yeast promoter. EMBO J. 10: 361–368.
  • Strich, R., M. R. Slater, and R. E. Esposito 1989. Identification of negative regulatory genes that govern the expression of early meiotic genes in yeast. Proc. Natl. Acad. Sci. USA 86: 10018–10022.
  • Tabtiang, R. K. Unpublished data.
  • Thompson, C. M., A. J. Koleske, D. M. Chao, and R. A. Young 1993. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73: 1361–1375.
  • Vallier, L. G., and M. Carlson 1994. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae. Genetics 137: 49–54.
  • Wahi, M., and A. D. Johnson 1995. Identification of genes required for α2 repression in Saccharomyces cerevisiae. Genetics 140: 79–90.
  • Winston, F., D. T. Chaleff, B. Valent, and G. R. Fink 1984. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107: 179–197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.