46
Views
138
CrossRef citations to date
0
Altmetric
Gene Expression

Identification of a Translation Initiation Factor 3 (eIF3) Core Complex, Conserved in Yeast and Mammals, That Interacts with eIF5

, , , , , , & show all
Pages 4935-4946 | Received 27 Mar 1998, Accepted 11 May 1998, Published online: 27 Mar 2023

REFERENCES

  • Anderson, J., M. Pak, L. Phan, R. Cuesta, K. Asano, M. Tamame, and A. G. Hinnebusch. A nuclear complex containing Gcd10p and Gcd14p controls translation by promoting maturation of initiator methionyl-tRNA. Submitted for publication.
  • Asano, K., J. Anderson, and A. G. Hinnebusch. Unpublished data.
  • Asano, K., L. Phan, J. Anderson, and A. G. Hinnebusch. Complex formation by all five homologues of mammalian translation initiation factor 3 subunits from yeast Saccharomyces cerevisiae. J. Biol. Chem., in press.
  • Asano, K., T. G. Kinzy, W. C. Merrick, and J. W. B. Hershey 1997. Conservation and diversity of eukaryotic translation initiation factor eIF3. J. Biol. Chem. 272: 1101–1109.
  • Asano, K., W. C. Merrick, and J. W. B. Hershey 1997. The translation initiation factor eIF3-p48 subunit is encoded by int-6, a site of frequent integration by the mouse mammary tumor virus genome. J. Biol. Chem. 272: 23477–23480.
  • Asano, K., H.-P. Vornlocher, N. J. Richter-Cook, W. C. Merrick, A. G. Hinnebusch, and J. W. B. Hershey 1997. Structure of cDNAs encoding human eukaryotic initiation factor 3 subunits: possible roles in RNA binding and macromolecular assembly. J. Biol. Chem. 272: 27042–27052.
  • Bartel, P. L., C. T. Chien, R. Stemglanz, and S. Fields 1993. Using the two-hybrid system to detect protein-protein interactions Cellular interactions in development: a practical approach. In: Hartley, D. A.153–179Oxford University Press, Oxford, England.
  • Behlke, J., U. A. Bommer, G. Lutsch, A. Henske, and H. Bielka 1986. Structure of initiation factor eIF-3 from rat liver. Hydrodynamic and electron microscopic investigations. Eur. J. Biochem. 157: 523–530.
  • Benne, R., M. L. Brown-Luedi, and J. W. B. Hershey 1979. Protein synthesis initiation factors from rabbit reticulocytes: purification, characterization, and radiochemical labeling. Methods Enzymol. 60: 15–35.
  • Benne, R., and J. W. B. Hershey 1978. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J. Biol. Chem. 253: 3078–3087.
  • Boeke, J. D., F. LaCroute, and G. R. Fink 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197: 345–346.
  • Brown-Luedi, M. L., L. J. Meyer, S. C. Milburn, P. M. P. Yau, S. Corbett, and J. W. B. Hershey 1982. Protein synthesis initiation factors from human HeLa cells and rabbit reticulocytes are similar: comparison of protein structure, activities, and immunochemical properties. Biochemistry 21: 4202–4206.
  • Bushman, J. L., M. Foiani, A. M. Cigan, C. J. Paddon, and A. G. Hinnebusch 1993. Guanine nucleotide exchange factor for eIF-2 in yeast: genetic and biochemical analysis of interactions between essential subunits GCD2, GCD6, and GCD7 and regulatory subunit GCN3. Mol. Cell. Biol. 13: 4618–4631.
  • Chakrabarti, A., and U. Maitra 1991. Function of eukaryotic initiation factor 5 in the formation of an 80 S ribosomal polypeptide chain initiation complex. J. Biol. Chem. 21: 14039–14045.
  • Checkley, J. W., L. Cooley, and J. M. Ravel 1981. Characterization of initiation factor eIF-3 from wheat germ. J. Biol. Chem. 256: 1582–1586.
  • Cigan, A. M., M. Foiani, E. M. Hannig, and A. G. Hinnebusch 1991. Complex formation by positive and negative translational regulators of GCN4. Mol. Cell. Biol. 11: 3217–3228.
  • Cigan, A. M., E. K. Pabich, L. Feng, and T. F. Donahue 1989. Yeast translation initiation suppressor sui2 encodes the alpha subunit of eukaryotic initiation factor 2 and shares identity with the human alpha subunit. Proc. Natl. Acad. Sci. USA 86: 2784–2788.
  • Danaie, P., B. Wittmer, M. Altmann, and H. Trachsel 1995. Isolation of a protein complex containing translation initiation factor Prt1 from Saccharomyces cerevisiae. J. Biol. Chem. 270: 4288–4292.
  • Devereux, J., P. Haeberli, and O. Smithies 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12: 387–395.
  • Donahue, T. F., A. M. Cigan, E. K. Pabich, and B. Castilho-Valavicius 1988. Mutations at a Zn(II) finger motif in the yeast eIF-2α gene alter ribosomal start-site selection during the scanning process. Cell 54: 621–632.
  • Dorris, D. R., F. L. Erickson, and E. M. Hannig 1995. Mutations in GCD11, the structural gene for eIF-2γ in yeast, alter translational regulation of GCN4 and the selection of the start site for protein synthesis. EMBO J. 14: 2239–2249.
  • Feinberg, B., C. S. McLaughlin, and K. Moldave 1982. Analysis of temperature-sensitive mutant ts187 of Saccharomyces cerevisiae altered in a component required for the initiation of protein synthesis. J. Biol. Chem. 257: 10846–10851.
  • Fields, S., and O. Song 1989. A novel genetic system to detect protein-protein interactions. Nature 340: 245–246.
  • Garcia-Barrio, M. T., T. Naranda, R. Cuesta, A. G. Hinnebusch, J. W. B. Hershey, and M. Tamame 1995. GCD10, a translational repressor of GCN4, is the RNA-binding subunit of eukaryotic translation initiation factor-3. Genes Dev. 9: 1781–1796.
  • Greenberg, J. R., L. Phan, Z. Gu, A. deSilva, C. Apolito, F. Sherman, A. G. Hinnebusch, and D. S. Goldfarb. Nip1p associates with 40S ribosomes and the Prt1p subunit of eIF3 and is required for efficient translation initiation. J. Biol. Chem., in press.
  • Gu, Z., R. P. Moerschell, F. Sherman, and D. S. Goldfarb 1992. NIP1, a gene required for nuclear transport in yeast. Proc. Natl. Acad. Sci. USA 89: 10355–10359.
  • Gupta, N. K., A. L. Roy, M. K. Nag, T. G. Kinzy, S. MacMillan, R. F. Hileman, T. E. Dever, S. Wu, W. C. Merrick, and J. W. B. Hershey New insights into an old problem: ternary complex (Met-tRNAieIF-2-GTP) formation in animal cells Post-transcriptional control of gene expression In: McCarthy, J. E. G., and M. F. TuiteH491990521–526Springer-Verlag, Berlin, Germany.
  • Harper, J. W., G. R. Adami, N. Wei, K. Keyomarsi, and S. J. Elledge 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816.
  • Hartwell, L. H., and C. S. McLaughlin 1969. A mutant of yeast apparently defective in the initiation of protein synthesis. Proc. Natl. Acad. Sci. USA 62: 468–474.
  • Henzel, W. J., T. M. Billeci, J. T. Stults, S. C. Wong, C. Grimley, and C. Watanabe 1993. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA 90: 5011–5015.
  • Hershey, J. W. B. Personal communication.
  • Hershey, J. W. B., K. Asano, T. Naranda, H. P. Vornlocher, P. Hanachi, and W. C. Merrick 1996. Conservation and diversity in the structure of translation initiation factor eIF3 from humans and yeast. Biochimie 78: 903–907.
  • Huang, H., H. Yoon, E. M. Hannig, and T. F. Donahue 1997. GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae. Genes Dev. 11: 2396–2413.
  • Hussain, I., and M. J. Leibowitz 1986. Translation of homologous and heterologous messenger RNAs in a yeast cell-free system. Gene 46: 13–23.
  • Ito, H., Y. Fukada, K. Murata, and A. Kimura 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.
  • Kasperaitis, M. A., H. O. Voorma, and A. A. Thomas 1995. The amino acid sequence of eukaryotic translation initiation factor 1 and its similarity to yeast initiation factor SUI1. FEBS Lett. 365: 47–50.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
  • Lamphear, B. J., R. Kirchweger, T. Skern, and R. E. Rhoads 1995. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. J. Biol. Chem. 270: 21975–21983.
  • Lauer, S. J., E. A. Burks, and J. M. Ravel 1985. Characterization of initiation factor 3 from wheat germ. 1. Effects of proteolysis on activity and subunit composition. Biochemistry 24: 2924–2928.
  • Mader, S., H. Lee, A. Pause, and N. Sonenberg 1995. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4γ and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15: 4990–4997.
  • Merrick, W. C., and J. W. B. Hershey 1996. The pathway and mechanism of eukaryotic protein synthesis Translational control. In: Hershey, J. W. B., M. B. Matthews, and N. Sonenberg31–69Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Methot, N., E. Rom, H. Olsen, and N. Sonenberg 1997. The human homologue of the yeast Prt1 protein is an integral part of the eukaryotic initiation factor 3 complex and interacts with p170. J. Biol. Chem. 272: 1110–1116.
  • Methot, N., M. S. Song, and N. Sonenberg 1996. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYFG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol. Cell. Biol. 16: 5328–5334.
  • Naranda, T., M. Kainuma, S. E. McMillan, and J. W. B. Hershey 1997. The 39-kilodalton subunit of eukaryotic translation initiation factor 3 is essential for the complex’s integrity and for cell viability in Saccharomyces cerevisiae. Mol. Cell. Biol. 17: 145–153.
  • Naranda, T., S. E. MacMillan, T. F. Donahue, and J. W. Hershey 1996. SUI1/p16 is required for the activity of eukaryotic translation initiation factor 3 in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 2307–2313.
  • Naranda, T., S. E. MacMillan, and J. W. B. Hershey 1994. Purified yeast translational initiation factor eIF-3 is an RNA-binding protein complex that contains the PRT1 protein. J. Biol. Chem. 269: 32286–32292.
  • Park, E.-C., D. Finley, and J. W. Szostak 1992. A strategy for the generation of conditional mutations by protein destabilization. Proc. Natl. Acad. Sci. USA 89: 1249–1252.
  • Peterson, D. T., W. C. Merrick, and B. Safer 1979. Binding and release of radiolabeled eukaryotic initiation factors 2 and 3 during 80 S initiation complex formation. J. Biol. Chem. 254: 2509–2519.
  • Peterson, D. T., B. Safer, and W. C. Merrick 1979. Role of eukaryotic initiation factor 5 in the formation of 80S initiation complexes. J. Biol. Chem. 254: 7730–7735.
  • Qin, J., D. Fenyo, Y. Zhao, W. W. Hall, D. M. Chao, C. J. Wilson, R. A. Young, and B. T. Chait 1997. A strategy for rapid, high-confidence protein identification. Anal. Chem. 69: 3995–4001.
  • Raychaudhuri, P., A. Chaudhuri, and U. Maitra 1985. Eukaryotic initiation factor 5 from calf liver is a single polypeptide chain protein of Mr = 62,000. J. Biol. Chem. 260: 2132–2139.
  • Sherman, F., G. R. Fink, and C. W. Lawrence 1974. Methods of yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sikorski, R. S., and P. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Smith, D. B., and K. S. Johnson 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67: 31–40.
  • Tarun, S. Z., and A. B. Sachs 1996. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15: 7168–7177.
  • Tarun, S. Z., and A. B. Sachs 1995. A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9: 2997–3007.
  • Trachsel, H., and T. Staehelin 1978. Binding and release of eukaryotic initiation factor eIF-2 and GTP during protein synthesis initiation. Proc. Natl. Acad. Sci. USA 75: 204–208.
  • Trachsel, H., and T. Staehelin 1979. Initiation of mammalian protein synthesis. The multiple functions of the initiation factor eIF-3. Biochim. Biophys. Acta 565: 305–315.
  • Trachsel, H., and T. Staehelin 1979. Initiation of mammalian protein synthesis: the multiple functions of the initiation factor eIF-3. Biochim. Biophys. Acta 565: 305–314.
  • Verlhac, M.-H., R.-H. Chen, P. Hanachi, J. W. B. Hershey, and R. Derynck 1997. Identification of partners of TIF34, a component of the yeast eIF3 complex, required for cell proliferation and translation initiation. EMBO J. 16: 6812–6822.
  • Wach, A., A. Brachat, R. Pohlmann, and P. Philippsen 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793–1808.
  • Yon, J., and M. Fried 1988. Precise gene fusion by PCR. Nucleic Acids Res. 17: 4895.
  • Yoon, H. J., and T. F. Donahue 1992. The sui1 suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNAiMet recognition of the start codon. Mol. Cell. Biol. 12: 248–260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.