33
Views
132
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Phosphorylation of Nuclear MyoD Is Required for Its Rapid Degradation

, , &
Pages 4994-4999 | Received 03 Apr 1998, Accepted 08 Jun 1998, Published online: 28 Mar 2023

REFERENCES

  • Andrews, N. C., and D. V. Faller 1991. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 19: 2499.
  • Banerjee, A., R. J. Deshaies, and V. Chau 1995. Characterization of a dominant negative mutant of the cell cycle ubiquitin-conjugating enzyme Cdc34. J. Biol. Chem. 270: 26209–26215.
  • Cobrinik, D. 1996. Regulatory interactions among E2Fs and cell cycle control proteins. Curr. Top. Microbiol. Immunol. 208: 32–59.
  • Connell-Crowley, L., J. W. Harper, and D. W. Goodrich 1997. Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol. Biol. Cell 8: 287–301.
  • Crescenzi, M., T. P. Fleming, A. B. Lassar, H. Weintraub, and S. A. Aaronson 1990. MyoD induces growth arrest independent of differentiation in normal and transformed cells. Proc. Natl. Acad. Sci. USA 87: 8442–8446.
  • Davis, R. L., H. Weintraub, and A. Lassar 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987–1000.
  • Deshaies, R. J., V. Chau, and M. Kirschner 1995. Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway. EMBO J. 14: 303–312.
  • Feldman, R. M. R., C. C. Correll, K. B. Kaplan, and R. J. Deshaies 1997. A complex of Cdc4p, Skp1p, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91: 221–230.
  • Goebl, M. G., L. Goetsch, and B. Byers 1994. The Ubc3 (Cdc34) ubiquitin-conjugating enzyme is ubiquitinated and phosphorylated in vivo. Mol. Cell. Biol. 14: 3022–3029.
  • Goebl, M. G., J. Yochem, S. Jentsch, J. P. McGrath, A. Varshavsky, and B. Byers 1988. The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241: 1331–1335.
  • Goldberg, A. L. 1995. Functions of the proteasome: the lysis at the end of the tunnel. Science 268: 522–523.
  • Gonen, H., I. Stancovski, D. Shkedy, T. Hadari, B. Bercovich, E. Bengal, S. Mesilat, O. Abu-Hatoum, A. L. Schwartz, and A. Ciechanover 1996. Isolation, characterization, and partial purification of a novel ubiquitin-protein ligase, E3. J. Biol. Chem. 271: 302–310.
  • Gu, W., J. W. Schneider, G. Condorelli, S. Kaushal, V. Mahdavi, and B. Nadal-Ginard 1993. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72: 309–324.
  • Halevy, O., B. G. Novitch, D. B. Spicer, S. X. Skapek, J. Rhee, G. J. Hannon, D. Beach, and A. B. Lassar 1995. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267: 1018–1021.
  • Harrington, M. A., B. Konicek, A. Song, X. L. Xia, W. J. Fredericks, Rauscher F. J., III. 1993. Inhibition of colony-stimulating factor-1 promoter activity by the product of the Wilms’ tumor locus. J. Biol. Chem. 268: 21271–21275.
  • Henchoz, S., Y. Chi, B. Catarin, I. Herskowitz, R. J. Deshaies, and M. Peter 1997. Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes Dev. 11: 3046–3060.
  • Hochstrasser, M. 1995. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr. Opin. Cell Biol. 7: 215–223.
  • Horwitz, M. 1996. Hypermethylated myoblasts specifically deficient in MyoD autoactivation as a consequence of instability of MyoD. Exp. Cell Res. 226: 170–182.
  • Jones, K. A. 1997. Taking a new TAK on Tat transactivation. Genes Dev. 11: 2593–2599.
  • Kato, J., H. Matsushime, S. W. Hiebert, M. E. Ewen, and C. J. Sherr 1993. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 7: 331–342.
  • Kornitzer, D., B. Raboy, R. G. Kulka, and G. R. Fink 1994. Regulated degradation of the transcription factor Gcn4. EMBO J. 13: 6021–6030.
  • Lanker, S., M. H. Valdivieso, and C. Wittenberg 1996. Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science 271: 1597–1601.
  • Lassar, A. B., J. N. Buskin, D. Lockshon, S. Apone, S. D. Hauschka, and H. Weintraub 1989. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase promoter. Cell 58: 823–831.
  • Li, F. N., and M. Johnston 1997. Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J. 16: 5629–5638.
  • Lin, W.-C., and S. Desiderio 1993. Regulation of V(D)J recombination activator protein RAG-2 by phosphorylation. Science 260: 953–959.
  • Lisztwan, J., A. Marti, H. Sutterluty, M. Gstaiger, C. Wirbelauer, and W. Krek 1998. Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45SKP2: evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway. EMBO J. 17: 368–383.
  • Ludolph, D. C., and S. F. Konieczny 1995. Transcription factor families: muscling in on the myogenic program. FASEB J. 9: 1595–1604.
  • Madden, S. L., D. M. Cook, J. F. Morris, A. Gashler, V. P. Sukhatme, Rauscher F. J., III. 1991. Transcriptional repression mediated by the WT1 Wilm’s tumor gene product. Science 253: 1550–1553.
  • Megeney, L. A., B. Kablar, K. Garrett, J. E. Anderson, and M. A. Rudnicki 1996. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev. 10: 1173–1183.
  • Moreno, S., and P. Nurse 1990. Substrates for p34cdc2: in vivo veritas? Cell 61: 549–551.
  • Morisaki, H., A. Fujimoto, A. Ando, Y. Nagata, K. Ikeda, and M. Nakanishi 1997. Cell cycle-dependent phosphorylation of p27 cyclin-dependent kinase inhibitor by cyclin E/CDK2. Biochem. Biophys. Res. Commun. 240: 386–390.
  • Pagano, M., S. W. Tam, A. M. Theodoras, P. Beer-Romero, G. Dell Sal, V. Chau, P. R. Yew, G. R. Draetta, and M. Rolfe 1995. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269: 682–685.
  • Parker, S. B., G. Eichele, P. Zhang, A. Rawls, A. T. Sands, A. Bradley, E. N. Olson, J. W. Harper, and S. J. Elledge 1995. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267: 1024–1027.
  • Plon, S. E., K. A. Leppig, H.-N. Do, and M. Groudine 1993. Cloning of the human homolog of the CDC34 cell cycle gene by complementation in yeast. Proc. Natl. Acad. Sci. USA 90: 10484–10488.
  • Rao, S. S., C. Chu, and D. S. Kohtz 1994. Ectopic expression of cyclin D1 prevents activation of gene transcription by myogenic basic helix-loop-helix regulators. Mol. Cell. Biol. 14: 5259–5267.
  • Rudnicki, M. A., T. Braun, S. Hinuma, and R. Jaenisch 1992. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71: 383–390.
  • Rudnicki, M. A., P. N. J. Schnegelsberg, R. H. Stead, T. Braun, H.-H. Arnold, and R. Jaenisch 1993. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75: 1351–1359.
  • Sambrook, J. E., F. Fritsch, and T. Maniatis 1989. Molecular cloning: a laboratory manual2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Seemüller, E., A. Lupas, D. Stock, J. Löwe, R. Huber, and W. Baumeister 1995. Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268: 579–582.
  • Segel, I. H. 1976. p376. Biochemical calculations2nd ed. John Wiley & Sons, New York, N.Y.
  • Sheaff, R. J., M. Groudine, M. Gordon, J. M. Roberts, and B. E. Clurman 1997. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 11: 1464–1478.
  • Skapek, S. X., J. Rhee, D. B. Spicer, and A. B. Lassar 1995. Inhibition of myogenic differentiation in proliferating myoblasts by cyclin D1-dependent kinase. Science 267: 1022–1024.
  • Skowyra, D., K. L. Craig, M. Tyers, S. J. Elledge, and J. W. Harper 1997. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91: 209–219.
  • Slansky, J. E., and P. J. Farnham 1996. Introduction to the E2F family: protein structure and gene regulation. Curr. Top. Microbiol. Immunol. 208: 1–31.
  • Sorrentino, V., R. Pepperkok, R. L. Davis, W. Ansorge, and L. Philipson 1990. Cell proliferation inhibited by MyoD independently of myogenic differentiation. Nature (London) 345: 813–815.
  • Thayer, M. J., S. J. Tapscott, R. L. Davis, W. E. Wright, A. B. Lassar, and H. Weintraub 1989. Positive autoregulation of the myogenic determination gene MyoD. Cell 58: 241–248.
  • Thorburn, A. M., P. A. Walton, and J. R. Feramisco 1993. MyoD induced cell cycle arrest is associated with increased nuclear affinity of the Rb protein. Mol. Biol. Cell 4: 705–713.
  • Venuti, J. M., and P. Cserjesi 1996. Molecular embryology of skeletal myogenesis. Curr. Top. Dev. Biol. 34: 169–206.
  • Vlach, J., S. Hennecke, and B. Amati 1997. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. EMBO J. 16: 5334–5344.
  • Weintraub, H., R. Davis, S. Tapscott, M. Thayer, M. Krause, R. Benezra, T. K. Blackwell, D. Turner, S. Hollenberg, Y. Zhuang, and A. Lassar 1991. The MyoD family: nodal point during specification of the muscle cell lineage. Science 251: 761–766.
  • Willems, A. R., S. Lanker, E. E. Patton, K. L. Craig, T. F. Nason, N. Mathias, R. Kobayashi, C. Wittenberg, and M. Tyers 1996. Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell 62: 453–463.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.