48
Views
228
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A Human RNA Polymerase II Complex Containing Factors That Modify Chromatin Structure

, , , , , , & show all
Pages 5355-5363 | Received 13 May 1998, Accepted 16 Jun 1998, Published online: 28 Mar 2023

REFERENCES

  • Alland, L., R. Muhle, H. Hou, J. Potes, L. Chin, N. Schreiber-Agus, and R. DePinho 1997. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature (London) 387: 49–55.
  • Allison, L., J. Wong, V. Fitzpatrick, M. Moyle, and J. Ingles 1988. The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function. Mol. Cell. Biol. 8: 321–329.
  • Bannister, A., and T. Kouzarides 1996. The CBP-co-activator is a histone acetyltransferase. Nature (London) 384: 641–643.
  • Brownell, J., J. Zhou, T. Ranalli, R. Kobayashi, D. Edmondson, S. Roth, and D. Allis 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851.
  • Cairns, B., Y. Lorch, M. Zhang, L. Lacomis, H. Erdjument-Bromage, P. Tempst, J. Du, B. Laurent, and R. Kornberg 1996. RSC, an essential, abundant chromatin-remodelling complex. Cell 87: 1249–1260.
  • Candau, R., P. Moore, L. Wang, N. Barlev, C. Ying, C. Rosen, and S. Berger 1996. Identification of human proteins functionally conserved with the yeast putative adaptors ADA2 and GCN5. Mol. Cell. Biol. 16: 593–602.
  • Carlson, M. 1997. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu. Rev. Cell Dev. Biol. 13: 1–23.
  • Chang, M., and J. Jaehning 1997. A multiplicity of mediators: alternative forms of transcription complexes communicate with transcriptional regulators. Nucleic Acids Res. 25: 4861–4865.
  • Chao, D., E. Gadbois, P. Murray, S. Anderson, M. Sonu, J. Parvin, and R. Young 1996. A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Nature (London) 380: 82–85.
  • Chestnut, J., J. Stephens, and M. Dahmus 1992. The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit IIa. J. Biol. Chem. 267: 10500–10506.
  • Cho, H., E. Maldonado, and D. Reinberg 1997. Affinity purification of a human RNA polymerase II complex using monoclonal antibodies against transcription factor IIF. J. Biol. Chem. 272: 11495–11502.
  • Cujec, T. P., H. Cho, E. Maldonado, J. Meyer, D. Reinberg, and B. M. Peterlin 1997. The human immunodeficiency virus transactivator Tat interacts with the RNA polymerase II holoenzyme. Mol. Cell. Biol. 17: 1817–1823.
  • Currie, R. 1998. NF-Y is associated with the histone acetyltransferases GCN5 and P/CAF. J. Biol. Chem. 273: 1430–1434.
  • Dahmus, M. 1996. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271: 19009–19012.
  • Flanagan, P., R. Kelleher, M. Sayre, H. Tshochner, and R. Kornberg 1991. A mediator required for activation of RNA polymerase II transcription in vitro. Nature (London) 350: 436–438.
  • Gaudreau, L., A. Schmid, D. Blaschke, M. Ptashne, and W. Horz 1997. RNA polymerase II holoenzyme recruitment is sufficient to remodel chromatin at the yeast PHO5 promoter. Cell 89: 55–62.
  • Grant, P., L. Duggan, J. Cote, S. Roberts, J. Brownell, R. Candau, R. Ohba, T. Owen-Hughes, D. Allis, F. Winston, S. Berger, and J. Workman 1997. Yeast Gcn5 functions in two multiprotein complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11: 1640–1650.
  • Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature (London) 389: 349–352.
  • Gustafsson, C., L. Myers, Y. Li, M. Redd, M. Lui, H. Erdjument-Bromage, P. Tempst, and R. Kornberg 1997. Identification of Rox3 as a component of mediator and RNA polymerase II holoenzyme. J. Biol. Chem. 272: 48–50.
  • Hampsey, M. 1998. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol. Mol. Biol. Rev. 62: 465–503.
  • Hassig, C., T. Fleischer, A. Billin, S. Schreiber, and D. Ayer 1997. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89: 341–347.
  • Hebbes, T., A. Clayton, A. Thorne, and C. Crane-Robinson 1994. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7: 1395–1402.
  • Heinzel, T., R. Lavinsky, T. Mullen, M. Soderstrom, C. Laherty, J. Torchia, W.-M. Yang, G. Brard, S. Ngo, J. Davie, E. Seto, R. Eisenman, D. Rose, C. Glass, and M. Rosenfeld 1997. A complex containing N-CoR, mSin3A and histone deacetylase mediates transcriptional repression. Nature (London) 387: 43–48.
  • Ito, T., M. Bulger, M. Pazin, R. Kobayashi, and J. Kadonaga 1997. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90: 145–155.
  • Janknecht, R., and T. Hunter 1996. Transcription. A growing coactivator network. Nature (London) 383: 22–23.
  • Kadosh, D., and K. Struhl 1997. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor Rpd3 histone deacetylase to target promoters. Cell 89: 365–371.
  • Kelleher, R., P. Flanagan, and R. Kornberg 1990. A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 61: 1209–1215.
  • Kelleher, R., P. Flanagan, D. Chasman, A. Ponticelli, K. Struhl, and R. Kornberg 1992. Yeast and human TFIIDs are interchangeable for the response to acidic transcriptional activators in vitro. Genes Dev. 6: 296–304.
  • Kim, Y., S. Bjorklund, Y. Li, M. Sayre, and R. Kornberg 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77: 599–608.
  • Kingston, R., C. Bunker, and A. Imbalzano 1996. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10: 905–920.
  • Koleske, A., and R. Young 1994. An RNA polymerase II holoenzyme responsive to activators. Nature (London) 368: 466–469.
  • Kornberg, R. 1977. Structure of chromatin. Annu. Rev. Biochem. 46: 931–954.
  • Kuchin, S., P. Yeghiayan, and M. Carlson 1995. Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast. Proc. Natl. Acad. Sci. USA 92: 4006–4010.
  • Kwon, H., A. Imbalzano, P. Khavari, R. Kingston, and M. Green 1994. Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature (London) 370: 477–481.
  • Lai, J.-S., and W. Herr 1992. Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proc. Natl. Acad. Sci. USA 89: 6958–6962.
  • Lee, Y. C., S. Min, B. S. Gim, and Y.-J. Kim 1997. A transcriptional mediator protein that is required for activation of many RNA polymerase II promoters and is conserved from yeast to humans. Mol. Cell. Biol. 17: 4622–4632.
  • Li, Y., S. Bjorklund, Y. Jiang, Y.-J. Kim, W. Lane, D. Stillman, and R. Kornberg 1995. Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 92: 10864–10868.
  • Liao, S., D. Zhang, D. Jefferey, A. Koleske, C. Thompson, D. Chao, M. Viljoen, H. van Vuure, and R. Young 1995. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature (London) 374: 193–196.
  • Lu, H., O. Flores, R. Weinman, and D. Reinberg 1991. The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc. Natl. Acad. Sci. USA 88: 10004–10008.
  • Maldonado, E., R. Shiekhattar, M. Sheldon, H. Cho, R. Drapkin, P. Rickert, E. Lees, C. Anderson, S. Linn, and D. Reinberg 1996. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature (London) 381: 86–89.
  • Maldonado, E., R. Drapkin, and D. Reinberg 1996. Purification of human RNA polymerase II and general transcription factors. Methods Enzymol. 174: 72–100.
  • Marcus, G., N. Silverman, S. Berger, J. Horiuchi, and L. Guarente 1994. Functional similarities and physical association between Gcn5 and Ada2-putative transcriptional adaptors. EMBO J. 13: 4807–4815.
  • McCracken, S., N. Fong, K. Yankulov, S. Ballantyne, G. Pan, J. Greenblatt, S. Patterson, M. Wickens, and D. Bentley 1997. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature (London) 385: 357–361.
  • Mizzen, C., X.-J. Yang, T. Kokubo, J. Brownell, A. Bannister, H. Owen, J. Workman, L. Wang, S. Berger, T. Kouzarides, Y. Nakatani, and D. Allis 1996. The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell 87: 1261–1270.
  • Myers, L., C. Gustafsson, D. Bushnell, M. Lui, H. Erdjument-Bromage, P. Tempst, and R. Kornberg 1998. The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev. 12: 45–54.
  • Nagy, L., H.-Y. Kao, D. Chakravarti, R. Lin, C. Hassig, D. Ayer, S. Schreiber, and R. Evans 1997. Nuclear receptor repression is mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89: 373–380.
  • Nakajima, T., C. Uchida, S. Anderson, J. Parvin, and M. Montminy 1997. Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcription induction via signal-dependent factors. Genes Dev. 11: 738–747.
  • Nakajima, T., C. Uchida, S. Anderson, C.-G. Lee, J. Hurwitz, J. Parvin, and M. Montminy 1997. RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90: 1107–1112.
  • Neigeborn, L., and M. Carlson 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108: 845–858.
  • Neish, A., S. Anderson, B. S. W. Wei, and J. Parvin 1998. Factors associated with the mammalian RNA polymerase II holoenzyme. Nucleic Acids Res. 26: 847–853.
  • Neugebauer, K., and M. Roth 1997. Transcription units as RNA processing units. Genes Dev. 11: 3279–3285.
  • Nonet, M., and R. Young 1989. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123: 715–724.
  • O’Brien, T., S. Hardin, A. Greenleaf, and J. Lis 1994. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature (London) 370: 75–77.
  • Ogryzko, V., L. Schiltz, V. Russanova, B. Howard, and Y. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959.
  • Orphanides, G., T. Lagrange, and D. Reinberg 1996. The general transcription factors of RNA polymerase II. Genes Dev. 10: 2657–2683.
  • Orphanides, G., G. LeRoy, C. Chang, D. Luse, and D. Reinberg 1998. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92: 105–116.
  • Pan, G., T. Aso, and J. Greenblatt 1997. Interaction of elongation factors TFIIS and Elongin A with a human RNA polymerase II holoenzyme capable of promoter-specific initiation and responsive to transcriptional activators. J. Biol. Chem. 272: 24563–24571.
  • Payne, J., P. Laybourn, and M. Dahmus 1989. The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa. J. Biol. Chem. 264: 19621–19629.
  • Peterson, C., and J. Tamkun 1995. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20: 143–146.
  • Reifsnyder, C., J. Lowell, A. Clarke, and L. Pillus 1996. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat. Genet. 14: 42–49.
  • Rickert, P., W. Seghezzi, F. Shanahan, H. Cho, and E. Lees 1996. Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 12: 2631–2640.
  • Sawadogo, M., and R. Roeder 1985. Factors involved in specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proc. Natl. Acad. Sci. USA 82: 4394–4398.
  • Scully, R., S. Anderson, D. Chao, W. Wanjiang, Y. Liyan, R. Young, D. Livingston, and J. Parvin 1997. BRCA1 is a component of the RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 94: 5605–5610.
  • Shi, X., M. Chang, A. Wolf, C. Chang, A. Frazer-Abel, P. Wade, Z. Burton, and J. Jaehning 1997. Cdc73p and Paf1p are found in a novel RNA polymerase II-containing complex from the Srbp-containing holoenzyme. Mol. Cell. Biol. 17: 1160–1169.
  • Shikama, N., J. Lyon, and N. LaThangue 1997. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 7: 232–236.
  • Shuman, S. 1997. Origins of mRNA identity: capping enzymes bind to the phosphorylated C-terminal domain of the RNA polymerase II. Proc. Natl. Acad. Sci. USA 94: 12758–12760.
  • Song, W., I. Treich, N. Qian, S. Kuchin, and M. Carlson 1996. SSN genes that affect transcriptional repression in Saccharomyces cerevisiae encode SIN4, ROX3, and SRB proteins associated with RNA polymerase II. Mol. Cell. Biol. 16: 115–120.
  • Sqvestrup, J., Y. Li, J. Fellows, A. Gnatt, S. Bjorklund, and R. Kornberg 1997. Evidence for a mediator cycle at the initiation of transcription. Proc. Natl. Acad. Sci. USA 94: 6075–6078.
  • Sun, X., Y. Zhang, H. Cho, P. Rickert, E. Lees, W. Lane, and D. Reinberg. NAT, a human complex Srb polypeptides that functions as a negative regulator of activated transcription. Mol. Cell, in press.
  • Sune, C., T. Hayashi, Y. Liu, W. Lane, R. Young, and M. Garcia-Blanco 1997. CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription. Mol. Cell. Biol. 17: 6029–6039.
  • Tsukiyama, T., and C. Wu 1995. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83: 1011–1020.
  • Tsukiyama, T., and C. Wu 1997. Chromatin remodelling and transcription. Curr. Opin. Genet. Dev. 7: 182–191.
  • van Gool, A., E. Citterio, S. Rademakers, R. Os, W. Vermeulen, A. Constantinou, J.-M. Egly, D. Bootsma, and H. Hoejmakers 1997. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J. 16: 5955–5965.
  • Varga-Weisz, P., M. Wilm, E. Bonte, K. Dumas, M. Mann, and P. Becker 1997. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature (London) 388: 598–602.
  • Wade, P., D. Pruss, and A. Wolffe 1997. Histone acetylation: chromatin in action. Trends Biochem. Sci. 22: 128–132.
  • Wang, W., J. Cote, Y. Xue, P. Khavari, S. Biggar, C. Muchardt, G. Kalpana, S. Goff, M. Yaniv, J. Workman, and G. Crabtree 1996. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15: 5370–5382.
  • Wilson, C., D. Chao, A. Imbalzano, G. Schnitzler, R. Kingston, and R. Young 1996. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodelling. Cell 84: 235–244.
  • Workman, J., S. Abmayr, W. Cromlish, and R. Roeder 1988. Transcriptional regulation by the immediate early promoter of pseudorabies virus during in vitro nucleosome assembly. Cell 55: 211–219.
  • Yang, X.-J., V. Ogryzko, J. Nishikawa, B. Howard, and Y. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature (London) 382: 319–324.
  • Young, R. 1991. RNA polymerase II. Annu. Rev. Biochem. 60: 689–715.
  • Zehring, W., J. Lee, J. Weeks, R. Jokerst, and A. Greenleaf 1988. The C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription in vitro. Proc. Natl. Acad. Sci. USA 85: 3698–3702.
  • Zhang, Y., R. Iratni, H. Erdjument-Bromage, P. Tempst, and D. Reinberg 1997. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89: 357–364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.