8
Views
82
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Structure of the Chromosome VII Centromere Region in Neurospora crassa: Degenerate Transposons and Simple Repeats

, &
Pages 5465-5477 | Received 23 Feb 1998, Accepted 17 Jun 1998, Published online: 28 Mar 2023

REFERENCES

  • Allshire, R. C. 1997. Centromeres, checkpoints and chromatid cohesion. Curr. Opin. Genet. Dev. 7: 264–273.
  • Allshire, R. C., and G. H. Karpen 1997. The case for epigenetic effects on centromere identity and function. Trends Genet. 13: 489–496.
  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.
  • Boeke, J. D. 1989. Transposable elements in Saccharomyces cerevisiae Mobile DNA. In: Berg, D. E., and M. M. Howe335–374ASM Press, Washington, D.C.
  • Brooks, R. R., and P. C. Huang 1972. Redundant DNA of Neurospora crassa. Biochem. Genet. 6: 41–49.
  • Brown, W., and C. Tyler-Smith 1995. Centromere activation. Trends Genet. 11: 337–339.
  • Cambareri, E. B., J. H. Helber, and J. A. Kinsey 1994. Tad 1-1, an active LINE-like element of N. crassa. Mol. Gen. Genet. 242: 658–665.
  • Cambareri, E. B., B. C. Jensen, E. Schabtach, and E. U. Selker 1989. Repeat-induced G-C to A-T mutations in Neurospora. Science 244: 1571–1575.
  • Cambareri, E. B., M. J. Singer, and E. U. Selker 1991. Recurrence of repeat-induced point mutation (RIP) in Neurospora crassa. Genetics 127: 699–710.
  • Centola, M., and J. Carbon 1994. Cloning and characterization of centromeric DNA from Neurospora crassa. Mol. Cell. Biol. 14: 1510–1519.
  • Centola, M. B. 1993. Ph.D. thesis. University of California, Santa Barbara.
  • Charlesworth, B., and D. Charlesworth 1983. The population dynamics of transposable elements. Genet. Res. 42: 1–27.
  • Charlesworth, B., P. Sniegowski, and W. Stephan 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 37: 215–220.
  • Danilevskaya, O., F. Slot, M. Pavlova, and M. L. Pardue 1994. Structure of the Drosophila HeT-A transposon: a retrotransposon-like element forming telomeres. Chromosoma 103: 215–224.
  • Davis, R. H., and F. J. DeSerres 1970. Genetic and microbial research techniques for Neurospora crassa. Methods Enzymol. 17A: 47–143.
  • Devine, S. E., and J. D. Boeke 1996. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev. 10: 620–633.
  • Dobinson, K. F., R. E. Harris, and J. E. Hamer 1993. Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 6: 114–126.
  • Dorer, D. R., and S. Henikoff 1994. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77: 993–1002.
  • DuSarte, D., M. R. Cancilla, E. Earle, J. I. Mao, R. Saffery, K. M. Tainton, P. Kalitsis, J. Martyn, A. E. Barry, and K. H. Choo 1997. A functional neocentromere formed through activation of a latent human centromere consisting of non-alpha-satellite DNA. Nat. Genet. 16: 144–153.
  • Farman, M. L., Y. Tosa, N. Nitta, and S. A. Leong 1996. MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea. Mol. Gen. Genet. 251: 665–674.
  • Grandbastien, M.-A., A. Spielmann, and M. Caboche 1989. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380.
  • Grayburn, W. S., and E. U. Selker 1989. A natural case of RIP: degeneration of the DNA sequence in an ancestral tandem duplication. Mol. Cell. Biol. 9: 4416–4421.
  • Gutkin, G., and E. Cambareri. Unpublished results.
  • Haaf, T., P. E. Warburton, and H. F. Willard 1992. Integration of human alpha-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell 70: 681–696.
  • Halverson, D., M. Baum, J. Stryker, J. Carbon, and L. Clarke 1997. A centromere DNA-binding protein from fission yeast affects chromosome segregation and has homology to human CENP-B. J. Cell Biol. 136: 487–500.
  • Hansen, L. J., D. L. Chalker, and S. B. Sandmeyer 1988. Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses. Mol. Cell. Biol. 8: 5245–5256.
  • Harrington, J. J., G. VanBokkelen, R. W. Mays, K. Gustashaw, and H. F. Willard 1997. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 15: 345–355.
  • Higgins, D. G., and P. M. Sharp 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73: 237–244.
  • Hoogland, C., and C. Biemont 1996. Chromosomal distribution of transposable elements in Drosophila melanogaster: test of the ectopic recombination model for maintenance of insertion site number. Genetics 144: 197–204.
  • Hutchinson, C. A.III, S. C. Hardies, D. D. Loeb, W. R. Shehee, and M. H. Edgell 1989. LINEs and related retrotransposons: long interspersed repeated sequences in the eucaryotic genome Mobile DNA. In: Berg, D. E., and M. M. Howe593–617American Society for Microbiology, Washington, D.C.
  • Irelan, J. T., A. T. Hagemann, and E. U. Selker 1994. High frequency repeat-induced point mutation (RIP) is not associated with efficient recombination in Neurospora. Genetics 138: 1093–1103.
  • Karpen, G. H. 1994. Position-effect variegation and the new biology of heterochromatin. Curr. Opin. Genet. Dev. 4: 281–291.
  • Karpen, G. H., M. H. Le, and H. Le 1997. Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273: 118–122.
  • Kinsey, J. A. 1989. Restricted distribution of the Tad transposon in strains of Neurospora. Curr. Genet. 15: 271–275.
  • Kinsey, J. A. Personal communication.
  • Kinsey, J. A., P. W. Garrett-Engele, E. B. Cambareri, and E. U. Selker 1995. The Neurospora transposon Tad is sensitive to repeat-induced point mutation (RIP). Genetics 138: 657–664.
  • Kinsey, J. A., and J. Helber 1989. Isolation of a transposable element from Neurospora crassa. Proc. Natl. Acad. Sci. USA 86: 1929–1933.
  • Krumlauf, R., and G. A. Marzluf 1979. Characterization of the sequence complexity and organization of the Neurospora crassa genome. Biochemistry 18: 3705–3713.
  • Le, M. H., D. Duricka, and G. H. Karpen 1995. Islands of complex DNA are widespread in Drosophila centric heterochromatin. Genetics 141: 283–303.
  • Lindauer, A., D. Fraser, M. Bruderlein, and R. Schmitt 1993. Reverse transcriptase families and a copia-like retrotransposon, Osser, in the green alga Volvox carteri. FEBS Lett. 319: 261–266.
  • Lohe, A. R., A. J. Hilliker, and P. A. Roberts 1993. Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134: 1149–1174.
  • Lohe, A. R., and D. L. Brutlag 1986. Multiplicity of satellite DNA sequences in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 83: 696–700.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Manninen, I., and A. H. Schulam 1993. BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol. Biol. 22: 829–846.
  • Mason, J. M., and H. Biessmann 1995. The unusual telomeres of Drosophila. Trends Genet. 11: 58–62.
  • McClintock, B. 1945. Neurospora. I. Preliminary observations of the chromosomes of Neurospora crassa. Am. J. Bot. 32: 671–678.
  • Metzenberg, R. L., J. N. Stevens, E. Selker, and E. Morzycka-Wroblewska 1984. A method for finding the genetic map position of cloned DNA fragments. Neurospora Newsl. 31: 35–40.
  • Mitchell, A. R., J. R. Gosden, and D. A. Miller 1985. A cloned sequence, p82H, of the alphoid repeated DNA family found at the centromeres of all human chromosomes. Chromosoma 92: 369–377.
  • Mullis, K. B., and F. A. Faloona 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155: 335–350.
  • Murphy, T. D., and G. H. Karpen 1995. Localization of centromere function in a Drosophila minichromosome. Cell 82: 599–604.
  • Newmeyer, D., and D. R. Galeazzi 1977. The instability of Neurospora duplication Dp(IL;IR)H4250, and its genetic control. Genetics 85: 461–487.
  • Orbach, M. J. 1994. A cosmid with a HyR marker for fungal library construction and screening. Gene 150: 159–162.
  • Orbach, M. J., D. Vollrath, R. W. Davis, and C. Yanofsky 1988. An electrophoretic karyotype of Neurospora crassa. Mol. Cell. Biol. 8: 1469–1473.
  • Pearson, W. R., and D. J. Lipman 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444–2448.
  • Perkins, D. D. 1997. Chromosome rearrangements in Neurospora and other filamentous fungi. Adv. Genet. 36: 239–398.
  • Perkins, D. D., and E. G. Barry 1977. The cytogenetics of Neurospora. Adv. Genet. 19: 133–285.
  • Pluta, A. F., A. M. Mackay, A. M. Ainsztein, I. G. Goldberg, and W. C. Earnshaw 1995. The centromere: hub of chromosomal activities. Science 270: 1591–1594.
  • Rhodes, M. M. 1952. P. 66–80. Heterosis. In: Gowen, J. W. Iowa State Press, Ames.
  • Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.
  • Schechtman, M. 1987. Isolation of telomere DNA from Neurospora crassa. Mol. Cell. Biol. 7: 3168–3177.
  • Schechtman, M. G. 1990. Characterization of telomere DNA from Neurospora crassa. Gene 88: 159–165.
  • Selker, E., E. Cambareri, B. Jensen, and K. Haack 1987. Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell 51: 741–752.
  • Selker, E. U. 1990. Premeiotic instability of repeated sequences in Neurospora crassa. Annu. Rev. Genet. 24: 579–613.
  • Selker, E. U., B. C. Jensen, and G. A. Richardsen 1987. A portable signal causing faithful DNA methylation de novo in Neurospora crassa. Science 238: 48–53.
  • Sherman, F., G. R. Fink, and J. B. Hicks 1986. A laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Singleton, J. R. 1953. Chromosome morphology and the chromosome cycle in the ascus of Neurospora crassa. Am. J. Bot. 40: 124–144.
  • Smit, A. F., and A. D. Riggs 1996. Tiggers and other transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93: 1443–1448.
  • Steiner, N. C., and L. Clarke 1994. A novel epigenetic effect can alter centromere function in fission yeast. Cell 79: 865–874.
  • Sun, X., J. Wahlstrom, and G. Karpen 1997. Molecular structure of a functional Drosophila centromere. Cell 91: 1007–1019.
  • Tyler-Smith, C., R. J. Oakey, Z. Larin, R. B. Fisher, M. Crocker, N. A. Affara, M. A. Ferguson-Smith, M. Muenke, O. Zuffardi, and M. A. Jobling 1993. Localization of DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes. Nat. Genet. 5: 368–375.
  • Wandall, A. 1995. Clonal origin of partially inactivated centromeres in a stable dicentric chromosome. Cytogenet. Cell Genet. 69: 193–195.
  • Wellinger, R. J., and D. Sen 1997. The DNA structures at the ends of eukaryotic chromosomes. Eur. J. Cancer 33: 735–749.
  • Wilbur, W. J., and D. J. Lipman 1985. Rapid similarity searches of nucleic acid and protein data banks. Proc. Natl. Acad. Sci. USA 80: 726–730.
  • Wilke, C. M., E. Maimer, and J. Adams 1992. The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae. Genetica 86: 155–173.
  • Williams, B. C., T. D. Murphy, M. L. Goldberg, and G. H. Karpen 1997. Neocentromere activity of structurally acentric minichromosomes in Drosophila. Nat. Genet. 18: 30–37.
  • Wood, D. D., and D. J. L. Luck 1969. Hybridization of mitochondrial ribosomal RNA. J. Mol. Biol. 41: 211–217.
  • Zhou, S., N. Ke, J. M. Kim, and D. F. Voytas 1996. The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev. 10: 634–645.
  • Zinkowski, R. P., J. Meyne, and B. R. Brinkley 1991. The centromere-kinetochore complex: a repeat subunit model. J. Cell Biol. 113: 1091–1110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.