12
Views
34
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Maternal CCAAT Box Transcription Factor Which Controls GATA-2 Expression Is Novel and Developmentally Regulated and Contains a Double-Stranded-RNA-Binding Subunit

, , , &
Pages 5557-5566 | Received 17 Feb 1998, Accepted 10 Jun 1998, Published online: 28 Mar 2023

REFERENCES

  • Abdelilah, S., and W. Driever 1997. Pattern formation in janus-mutant zebrafish embryos. Dev. Biol. 184: 70–84.
  • Almouzni, G., and A. P. Wolffe 1995. Constraints on transcriptional activator function contribute to transcriptional quiescence during early Xenopus embryogenesis. EMBO J. 14: 1752–1765.
  • Baeuerle, P. A., and D. Baltimore 1988. IκB: a specific inhibitor of the NF-κB transcription factor. Science 242: 540–545.
  • Barberis, A., G. Superti-Furga, and M. Busslinger 1987. Mutually exclusive interaction of the CCAAT-binding factor and of a displacement protein with overlapping sequences of a histone gene promoter. Cell 50: 347–359.
  • Bass, B. L., S. R. Hurst, and J. D. Singer 1994. Binding properties of newly identified Xenopus proteins containing dsRNA-binding motifs. Curr. Biol. 4: 301–314.
  • Bearer, E. L. 1994. Distribution of Xrel in the early Xenopus embryo: a cytoplasmic and nuclear gradient. Eur. J. of Cell Biol. 63: 255–268.
  • Bertwistle, D., M. E. Walmsley, E. M. Read, J. A. Pizzey, and R. K. Patient 1996. GATA factors and the origins of adult and embryonic blood in Xenopus—responses to retinoic acid. Mech. Dev. 57: 199–214.
  • Brewer, A. C., M. J. Guille, D. J. Fear, G. A. Partington, and R. K. Patient 1995. Nuclear translocation of a maternal CCAAT factor at the start of gastrulation activates Xenopus GATA-2 transcription. EMBO J. 14: 757–766.
  • Chodosh, L. A., J. Olesen, S. Hahn, A. S. Baldwin, L. Guarente, and P. A. Sharp 1988. A yeast and a human CCAAT-binding protein have heterologous subunits that are functionally interchangeable. Cell 53: 25–35.
  • Corthesy, B., and P. N. Kao 1994. Purification by DNA affinity chromatography of 2 polypeptides that contact the NF-AT DNA-binding site in the interleukin-2 promoter. J. Biol. Chem. 269: 20682–20690.
  • Dorn, A., J. Bollekens, A. Staub, C. Benoist, and D. Mathis 1987. A multiplicity of CCAAT box binding proteins. Cell 50: 863–872.
  • Dorn, A., B. Durand, C. Marfing, M. Le Meur, C. Benoist, and D. Mathis 1987. Conserved major histocompatibility complex class II boxes—X and Y—are transcriptional control elements and specifically bind nuclear proteins. Proc. Natl. Acad. Sci. USA 84: 6249–6253.
  • Dreyer, C., Y. H. Wang, D. Wedlich, and P. Hansen 1983. Oocyte nuclear proteins in the development of Xenopus Current problems in germ cell differentiation. In: McClaren, A., and C. Wylie322–352Cambridge University Press, Cambridge, England.
  • Dzierzak, E., and A. Medvinsky 1995. Mouse embryonic hematopoiesis. Trends Genet. 11: 359–366.
  • ElHodiri, H. M., S. L. Che, M. NelmanGonzalez, J. Kuang, and L. D. Etkin 1997. Mitogen-activated protein kinase and cyclin B/Cdc2 phosphorylate Xenopus nuclear factor 7 (xnf7) in extracts from mature oocytes—implications for regulation of xnf7 subcellular localization. J. Biol. Chem. 272: 20463–20470.
  • Evans, T., M. Reitan, and G. Felsenfeld 1988. An erythroid-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc. Natl. Acad. Sci. USA 85: 5976–5980.
  • Fleenor, D. E., S. D. Langdon, C. M. Decastro, and R. E. Kaufman 1996. Comparison of human and Xenopus GATA-2 promoters. Gene 179: 219–223.
  • Gong, S.-G., B. A. Reddy, and L. D. Etkin 1995. Two forms of Xenopus nuclear factor 7 have overlapping spatial but different temporal patterns of expression during development. Mech. Dev. 52: 305–318.
  • Gove, C., M. Walmsley, S. Nijjar, D. Bertwistle, M. Guille, G. Partington, A. Bomford, and R. Patient 1997. Over-expression of GATA-6 in Xenopus embryos blocks differentiation of heart precursors. EMBO J. 16: 355–368.
  • Guttridge, K. L., and L. D. Smith 1995. Xenopus interspersed RNA families, Ocr and XR, bind DNA-binding proteins. Zygote 3: 111–122.
  • Harland, R. M. 1991. In situ hybridisation: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36: 685–695.
  • Heasman, J. 1997. Patterning the Xenopus blastula. Development 124: 4179–4191.
  • Heldin, C.-H., K. Miyazono, and P. ten Dijke 1997. TGF-b signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465–468.
  • Herberts, C., N. Moreau, and N. Angelier 1993. Immunolocalization of Hsp 70-related proteins constitutively expressed during Xenopus laevis oogenesis and development. Int. J. Dev. Biol. 37: 397–406.
  • Jiang, Y. M., and T. Evans 1996. The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev. Biol. 174: 258–270.
  • Kao, P. N., L. Chen, G. Brock, J. Ng, J. Kenny, A. J. Smith, and B. Corthesy 1994. NFAT sequence-specific DNA-binding protein is a novel heterodimer of 45-Kda and 90-Kda subunits. J. Biol. Chem. 269: 20691–20699.
  • Kelley, C., K. Yee, R. Harland, and L. I. Zon 1994. Ventral expression of GATA-1 and GATA-2 in the Xenopus embryo defines induction of hematopoietic mesoderm. Dev. Biol. 165: 193–205.
  • Koyano, S., M. Ito, N. Takamatsu, S. Takiguchi, and T. Shiba 1997. The Xenopus Sox3 gene expressed in oocytes of early stages. Gene 188: 101–107.
  • Laverriere, A. C., C. MacNiell, C. Mueller, R. E. Poelmann, J. B. E. Burch, and T. Evans 1994. GATA-4/5/6: a subfamily of three transcription factors transcribed in the developing heart and gut. J. Biol. Chem. 269: 23177–23184.
  • Lemaitre, J. M., S. Bocquet, R. Buckle, and M. Mechali 1995. Selective and rapid nuclear translocation of a C-Myc-containing complex after fertilization of Xenopus laevis eggs. Mol. Cell. Biol. 15: 5054–5062.
  • Li, X., W. Shou, M. Kloc, B. A. Reddy, and L. D. Etkin 1994. Cytoplasmic retention of Xenopus nuclear factor-7 before the mid-blastula transition uses a unique anchoring mechanism involving a retention domain and several phosphorylation sites. J. Cell Biol. 124: 7–17.
  • Li, X. X., W. Shou, M. Kloc, B. A. Reddy, and L. D. Etkin 1994. The association of Xenopus nuclear factor 7 with subcellular structures is dependent upon phosphorylation and specific domains. Exp. Cell Res. 213: 473–481.
  • Lum, L. S. Y., L. A. Sultzman, R. J. Kaufman, D. I. H. Linzer, and B. J. Wu 1990. A cloned human CCAAT-box-binding factor stimulates transcription from the human hsp70 promoter. Mol. Cell. Biol. 10: 6709–6717.
  • Maeno, M., P. E. Mead, C. Kelley, R. H. Xu, H. F. Kung, A. Suzuki, N. Ueno, and L. I. Zon 1996. The role of BMP-4 and GATA-2 in the induction and differentiation of hematopoietic mesoderm in Xenopus laevis. Blood 88: 1965–1972.
  • Martin, D. I. K., and S. H. Orkin 1990. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev. 4: 1886–1898.
  • Massague, J., A. Hata, and F. Liu 1997. TGF-beta signalling through the Smad pathway. Trends Cell Biol. 7: 187–192.
  • Massangue, J. 1996. TGF-b signalling: receptors, transducers and Mad proteins. Cell 85: 947–950.
  • Matsumoto, K., F. Meric, and A. P. Wolffe 1996. Translational repression dependent on the interaction of the Xenopus Y-box protein FRGY2 with messenger-RNA—role of the cold shock domain, tail domain, and selective RNA sequence recognition. J. Biol. Chem. 271: 22706–22712.
  • Meng, A. M., H. Tang, B. A. Ong, M. J. Farrell, and S. Lin 1997. Promoter analysis in living zebrafish embryos identifies a cis-acting motif required for neuronal expression of GATA-2. Proc. Natl. Acad. Sci. USA 94: 6267–6272.
  • Miller, M., B. A. Reddy, M. Kloc, X. X. Li, C. Dreyer, and L. D. Etkin 1991. The nuclear-cytoplasmic distribution of the Xenopus nuclear factor, xnf7, coincides with its state of phosphorylation during early development. Development 113: 569–575.
  • Minegishi, N., J. Ohta, N. Suwabe, H. Nakaushi, H. Ishihara, N. Hayashi, and M. Yamamoto 1998. Alternative promoters regulate transcription of the mouse GATA-2 gene. J. Biol. Chem. 273: 3625–3634.
  • Nerlov, C., and E. B. Ziff 1995. CCAAT/enhancer binding protein-a amino acid motifs with dual TBP and TFIIB binding ability co-operate to activate transcription in both yeast and mammalian cells. EMBO J. 14: 4318–4328.
  • Nieuwkoop, P. D., and J. Faber 1967. Normal Table of Xenopus laevis (Daudin). North Holland, Amsterdam, The Netherlands.
  • Nusse, R. 1997. A versatile transcriptional effector of wingless signalling. Cell 89: 321–323.
  • Orford, R. L., C. Robinson, and M. J. Guille. 1997. Unpublished data.
  • Orford, R. L., G. G. Kneale, and M. J. Guille. Unpublished data.
  • Orkin, S. H. 1995. Regulation of globin gene expression in erythroid cells. Eur. J. Biochem. 231: 271–281.
  • Ovsenek, N., H. A. Karn, and J. J. Heikilla 1991. Analysis of CCAAT box transcription factor binding activity during early Xenopus laevis embryogenesis. Dev. Biol. 145: 323–327.
  • Partington, G. A., D. Bertwistle, R. H. Nicolas, W. J. Kee, J. A. Pizzey, and R. K. Patient 1997. GATA-2 is a maternal transcription factor present in Xenopus oocytes as a nuclear complex which is maintained throughout early development. Dev. Biol. 181: 144–155.
  • Patterton, D., and A. P. Wolffe 1996. Developmental roles for chromatin and chromosomal structure. Dev. Biol. 173: 2–13.
  • Piccolo, S., Y. Sasai, B. Lu, and E. M. DeRobertis 1996. Dorsoventral patterning in Xenopus—inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86: 589–598.
  • Prioleau, M.-N., J. Huet, A. Sentenac, and M. Mechali 1994. Competition between chromatin and transcription complex assembly regulates gene expression during early development. Cell 77: 439–449.
  • Read, E. M., A. R. F. Rodaway, B. Neave, N. Brandon, N. Holder, R. K. Patient, and M. E. Walmsley. GATA factor expression reveals early regionalisation within the non-neural ectoderm of Xenopus and zebrafish embryos: A/P patterning by FGF. Submitted for publication.
  • Rosner, M. H., R. J. Desanto, H. Arnheiter, and L. M. Staudt 1991. Oct-3 is a maternal factor required for the 1st mouse embryonic division. Cell 64: 1103–1110.
  • Rupp, R. A. W., L. Snider, and H. Weintraub 1994. Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 8: 1311–1323.
  • Shou, W., X. Li, C. F. Wu, T. Cao, J. Kuang, S. Che, and L. D. Etkin 1996. Finely tuned regulation of cytoplasmic retention of Xenopus nuclear factor 7 by phosphorylation of individual threonine residues. Mol. Cell. Biol. 16: 990–997.
  • Simon, M. C. 1995. Gotta have GATA. Nat. Genet. 11: 9–11.
  • Smith, L. D., W. Xu, and R. L. Varnold Oogenesis and oocyte isolation Xenopus laevis: practical uses in cell and molecular biology In: Kay, B. K., and H. B. Peng36199145–58Academic Press, San Diego, Calif.
  • Smith, W. C., A. K. Knecht, M. Wu, and R. M. Harland 1993. Secreted noggin protein mimics the Spemann organiser in dorsalising Xenopus mesoderm. Nature 361: 547–549.
  • Sykes, T. G., A. R. F. Rodaway, M. E. Walmsley, and R. K. Patient. A dominant interfering GATA factor inhibits wnt-8 expression and causes secondary axis formation in Xenopus. Submitted for publication.
  • Tsai, F. Y., G. Keller, F. C. Kuo, M. Weiss, J. Chen, M. Rosenblatt, F. W. Alt, and S. H. Orkin 1994. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371: 221–226.
  • Tsai, F. Y., and S. H. Orkin 1997. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89: 3636–3643.
  • Veenstra, G. J. C., T. J. Beumer, J. Petersonmaduro, B. I. Stegeman, H. A. Karg, P. J. Vandervliet, and O. H. J. Destree 1995. Dynamic and differential Oct-1 expression during early Xenopus embryogenesis—persistence of Oct-1 protein following down-regulation of the RNA. Mech. Dev. 50: 103–117.
  • Vinson, C., K. LaMarco, P. Johnson, W. Landschultz, and S. McKnight 1988. In situ detection of sequence specific DNA binding activity specified by a recombinant bacteriophage. Genes Dev. 2: 801–806.
  • Vriz, S., J.-M. Lemaitre, M. Leibovici, N. Thierry, and M. Méchali 1992. Comparative analysis of the intracellular localization of c-Myc, c-Fos, and replicative proteins during cell cycle progression. Mol. Cell. Biol. 12: 3548–3555.
  • Walmsley, M. E., M. J. Guille, D. Bertwistle, J. C. Smith, J. A. Pizzey, and R. K. Patient 1994. Negative control of Xenopus GATA-2 by activin and noggin with eventual expression in precursors of the ventral blood islands. Development 120: 2519–2529.
  • Whiteside, S. T., and S. Goodbourn 1993. Signal transduction and nuclear targeting: regulation of transcription factor activity by subcellular localisation. J. Cell Sci. 104: 949–955.
  • Whitfield, T. T., J. Heasman, and C. C. Wylie 1995. Early embryonic expression of XLPOU-60, a Xenopus POU-domain protein. Dev. Biol. 169: 759–769.
  • Wolffe, A. P., S. Tafuri, M. Ranjan, and M. Samilari 1992. The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. New Biol. 4: 290–298.
  • Wormington, M. 1997. Personal communication.
  • Worrad, D. M., P. T. Ram, and R. M. Schultz 1994. Regulation of gene expression in the mouse oocyte and early preimplantation embryo—developmental changes in Sp1 and TATA box-binding protein, TBP. Development 120: 2347–2357.
  • Wyllie, A. H., R. A. Laskey, J. Finch, and J. B. Gurdon 1978. Selective DNA conservation and chromatin assembly after injection of SV40 DNA into Xenopus oocytes. Dev. Biol. 64: 178–188.
  • Yamamoto, M., L. J. Ko, M. W. Leonard, H. Beug, S. H. Orkin, and D. Engel 1990. Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. Genes Dev. 4: 1650–1662.
  • Yoon, J.-B., S. Murphy, L. Bai, Z. Wang, and R. G. Roeder 1995. Proximal sequence element-binding transcription factor (PTF) is a multisubunit complex required for transcription of both RNA polymerase II- and RNA polymerase III-dependent small nuclear RNA genes. Mol. Cell. Biol. 15: 2019–2027.
  • Zhang, C. H., and T. Evans 1996. BMP-like signals are required after the midblastula transition for blood-cell development. Dev. Genet. 18: 267–278.
  • Zimmerman, L. B., J. M. D. Jesus-Escobar, and R. M. Harland 1996. The Spemann organiser signal noggin binds and inactivates bone morphogenic protein 4. Cell 86: 599–606.
  • Zon, L. I., C. Mather, S. Burgess, M. Bolce, R. M. Harland, and S. H. Orkin 1991. Expression of GATA binding proteins during embryonic development in Xenopus laevis. Proc. Natl. Acad. Sci. USA 88: 10642–10646.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.