17
Views
91
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Sir Proteins, Rif Proteins, and Cdc13p Bind Saccharomyces Telomeres In Vivo

, , &
Pages 5600-5608 | Received 20 Apr 1998, Accepted 03 Jun 1998, Published online: 28 Mar 2023

REFERENCES

  • Adams, A. K., and C. Holm 1996. Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 4614–4620.
  • Alexandre, C., D. A. Grueneberg, and M. Z. Gilman 1993. Studying heterologous transcription factors in yeast. Methods Companion Methods Enzymol. 5: 147–155.
  • Aparicio, O. M., B. L. Billington, and D. E. Gottschling 1991. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66: 1279–1287.
  • Boulton, S. J., and S. P. Jackson 1998. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17: 1819–1828.
  • Boulton, S. J., and S. P. Jackson 1996. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24: 4639–4648.
  • Brachmann, C. B., J. M. Sherman, S. E. Devine, E. E. Cameron, L. Pillus, and J. D. Boeke 1995. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9: 2888–2902.
  • Braunstein, M., A. B. Rose, S. G. Holmes, C. D. Allis, and J. R. Broach 1993. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7: 592–604.
  • Brigati, C., S. Kurtz, D. Balderes, G. Vidali, and D. Shore 1993. An essential yeast gene encoding a TTAGGG repeat-binding protein. Mol. Cell. Biol. 13: 1306–1314.
  • Carson, M. J., and L. Hartwell 1985. CDC 17: an essential gene that prevents telomere elongation in yeast. Cell 42: 249–257.
  • Chien, C. T., S. Buck, R. Sternglanz, and D. Shore 1993. Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell 75: 531–541.
  • Chua, P. R., and G. S. Roeder 1997. Tam1, a telomere-associated meiotic protein, functions in chromosome synapsis and crossover interference. Genes Dev. 11: 1786–1800.
  • Cockell, M., F. Palladino, T. Laroche, G. Kyrion, C. Liu, A. J. Lustig, and S. M. Gasser 1995. The carboxy termini of Sir4 and Rap1 affect Sir3 localization: evidence for a multicomponent complex required for yeast telomeric silencing. J. Cell Biol. 129: 909–924.
  • Conrad, M. N., A. M. Dominguez, and M. E. Dresser 1997. Ndj1p, a meiotic telomere protein required for normal chromosome synapsis and segregation in yeast. Science 276: 1252–1255.
  • Conrad, M. N., J. H. Wright, A. J. Wolf, and V. A. Zakian 1990. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63: 739–750.
  • Cooper, J. P., E. R. Nimmo, R. C. Allshire, and T. R. Cech 1997. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385: 744–747.
  • Dalton, S., and R. Treisman 1992. Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell 68: 597–612.
  • Enomoto, S., P. D. McCune-Zierath, M. Gerami-Nejad, M. A. Sanders, and J. Berman 1997. RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev. 11: 358–370.
  • Farr, C., J. Fantes, P. Goodfellow, and H. Cooke 1991. Functional reintroduction of human telomeres into mammalian cells. Proc. Natl. Acad. Sci. USA 88: 7006–7010.
  • Garvik, B., M. Carson, and L. Hartwell 1995. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15: 6128–6138.
  • Gilson, E., M. Roberge, R. Giraldo, D. Rhodes, and S. M. Gasser 1993. Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites. J. Mol. Biol. 231: 293–310.
  • Gotta, M., T. Laroche, A. Formenton, L. Maillet, H. Scherthan, and S. M. Gasser 1996. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 134: 1349–1363.
  • Gotta, M., S. Strahl-Bolsinger, H. Renauld, T. Laroche, B. K. Kennedy, M. Grunstein, and S. M. Gasser 1997. Localization of Sir2p: the nucleolus as a compartment for silent information regulators. EMBO J. 16: 3243–3255.
  • Gottschling, D. E., O. M. Aparicio, B. L. Billington, and V. A. Zakian 1990. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63: 751–762.
  • Gottschling, D. E., and V. A. Zakian 1986. Telomere proteins: specific recognition and protection of the natural termini of Oxytricha macronuclear DNA. Cell 47: 195–205.
  • Grandin, N., S. I. Reed, and M. Charbonneau 1997. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11: 512–527.
  • Gravel, S., M. Larrivee, P. Labrecque, and R. J. Wellinger 1998. Yeast Ku as a regulator of chromosomal DNA end structure. Science 280: 741–744.
  • Gyuris, J., E. Golemis, H. Chertkov, and R. Brent 1993. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75: 791–803.
  • Hardy, C. F., L. Sussel, and D. Shore 1992. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev. 6: 801–814.
  • Hecht, A., T. Laroche, S. Strahl-Bolsinger, S. M. Gasser, and M. Grunstein 1995. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80: 583–592.
  • Hecht, A., S. Strahl-Bolsinger, and M. Grunstein 1996. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383: 92–96.
  • Holmes, S. G., A. B. Rose, K. Steuerle, E. Saez, S. Sayegh, Y. M. Lee, and J. R. Broach 1997. Hyperactivation of the silencing proteins, Sir2p and Sir3p, causes chromosome loss. Genetics 145: 605–614.
  • Kaufman, P. D., R. Kobayashi, and B. Stillman 1997. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev. 11: 345–357.
  • Khazak, V., P. P. Sadhale, N. A. Woychik, R. Brent, and E. A. Golemis 1995. Human RNA polymerase II subunit hsRPB7 functions in yeast and influences stress survival and cell morphology. Mol. Biol. Cell 6: 759–775.
  • Kim, R. A., P. R. Caron, and J. C. Wang 1995. Effects of yeast DNA topoisomerase III on telomere structure. Proc. Natl. Acad. Sci. USA 92: 2667–2671.
  • Kimmerly, W. J., and J. Rine 1987. Replication and segregation of plasmids containing cis-acting regulatory sites of silent mating-type genes in Saccharomyces cerevisiae are controlled by the SIR genes. Mol. Cell. Biol. 7: 4225–4237.
  • Kironmai, K. M., and K. Muniyappa 1997. Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae. Genes Cell 2: 443–455.
  • Klein, F., T. Laroche, M. E. Cardenas, J. F. Hofmann, D. Schweizer, and S. M. Gasser 1992. Localization of RAP1 and topoisomerase II in nucleic and meiotic chromosomes of yeast. J. Cell Biol. 117: 935–948.
  • Kota, R., and K. W. Runge 1998. The yeast telomere length regulator TEL2 encodes a protein that binds to telomeric DNA. Nucleic Acids Res. 26: 1528–1535.
  • Li, J. J., and I. Herskowitz 1993. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262: 1870–1874.
  • Lin, J. J., and V. A. Zakian 1994. Isolation and characterization of two Saccharomyces cerevisiae genes that encode proteins that bind to (TG1-3)n single strand telomeric DNA in vitro. Nucleic Acids Res. 22: 4906–4913.
  • Lin, J. J., and V. A. Zakian 1996. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA binding protein in vitro that affects telomere behavior in vivo. Proc. Natl. Acad. Sci. USA 93: 13760–13765.
  • Lin, J.-J., and V. A. Zakian 1995. An in vitro assay for Saccharomyces telomerase requires EST1. Cell 81: 1127–1135.
  • Lin, J.-J., and V. A. Zakian. Unpublished results.
  • Lingner, J., T. R. Cech, T. R. Hughes, and V. Lundblad 1997. Three ever shorter telomerase (EST) genes are dispensable for in vitro yeast telomerase activity. Proc. Natl. Acad. Sci. USA 94: 11190–11195.
  • Lingner, J., T. R. Hughes, A. Shevchenko, M. Mann, V. Lundblad, and T. R. Cech 1997. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276: 561–567.
  • Liu, C., and A. J. Lustig 1996. Genetic analysis of Rap1p/Sir3p interactions in telomeric and HML silencing in Saccharomyces cerevisiae. Genetics 143: 81–93.
  • Liu, Z., A. Lee, and W. Gilbert 1995. Gene disruption of a G4-DNA-dependent nuclease in yeast leads to cellular senescence and telomere shortening. Proc. Natl. Acad. Sci. USA 92: 6002–6006.
  • Louis, E. J., E. S. Naumova, A. Lee, G. Naumov, and J. E. Haber 1994. The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics 136: 789–802.
  • Lustig, A. J., C. Liu, C. Zhang, and J. P. Hanish 1996. Tethered Sir3p nucleates silencing at telomeres and internal loci in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 2483–2495.
  • Lustig, A. J., and T. D. Petes 1986. Identification of yeast mutants with altered telomere structure. Proc. Natl. Acad. Sci. USA 83: 1398–1402.
  • Ma, J., and M. Ptashne 1987. A new class of yeast transcriptional activators. Cell 51: 113–119.
  • Makarov, V. L., Y. Hirose, and J. P. Langmore 1997. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88: 657–666.
  • Marcand, S., S. W. Buck, P. Moretti, E. Gilson, and D. Shore 1996. Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap 1 protein. Genes Dev. 10: 1297–1309.
  • McElligott, R., and R. J. Wellinger 1997. The terminal DNA structure of mammalian chromosomes. EMBO J. 16: 3705–3714.
  • Moazed, D., and D. Johnson 1996. A deubiquitinating enzyme interacts with SIR4 and regulates silencing in S. cerevisiae. Cell 86: 667–677.
  • Moazed, D., A. Kistler, A. Axelrod, J. Rine, and A. D. Johnson 1997. Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc. Natl. Acad. Sci. USA 94: 2186–2191.
  • Monson, E. K., D. de Bruin, and V. A. Zakian 1997. The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc. Natl. Acad. Sci. USA 94: 13081–13086.
  • Moretti, P., K. Freeman, L. Coodly, and D. Shore 1994. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev. 8: 2257–2269.
  • Morris, D. K., and V. Lundblad 1997. Programmed translational frameshifting in a gene required for yeast telomere replication. Curr. Biol. 7: 969–976.
  • Nislow, C., E. Ray, and L. Pillus 1997. SET1, a yeast member of the trithorax family, functions in transcriptional silencing and diverse cellular processes. Mol. Biol. Cell 8: 2421–2436.
  • Nugent, C. I., T. R. Hughes, N. F. Lue, and V. Lundblad 1996. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274: 249–252.
  • Palladino, F., T. Laroche, E. Gilson, A. Axelrod, L. Pillus, and S. M. Gasser 1993. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75: 543–555.
  • Paquin, C. E., and V. M. Williamson 1986. Ty insertions at two loci account for most of the spontaneous antimycin A resistance mutations during growth at 15°C of Saccharomyces cerevisiae strains lacking ADH1. Mol. Cell. Biol. 6: 70–79.
  • Pemberton, L. F., and G. Blobel 1997. Characterization of the Wtm proteins, a novel family of Saccharomyces cerevisiae transcriptional modulators with roles in meiotic regulation and silencing. Mol. Cell. Biol. 17: 4830–4841.
  • Porter, S. E., P. W. Greenwell, K. B. Ritchie, and T. D. Petes 1996. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24: 582–585.
  • Reifsnyder, C., J. Lowell, A. Clarke, and L. Pillus 1996. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat. Genet. 14: 42–49.
  • Renauld, H., O. M. Aparicio, P. D. Zierath, B. L. Billington, S. K. Chhablani, and D. E. Gottschling 1993. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev. 7: 1133–1145.
  • Rine, J., and I. Herskowitz 1987. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116: 9–22.
  • Runge, K. W., and V. A. Zakian 1989. Introduction of extra telomeric DNA sequences into Saccharomyces cerevisiae results in telomere elongation. Mol. Cell. Biol. 9: 1488–1497.
  • Runge, K. W., and V. A. Zakian 1996. TEL2, an essential gene required for telomere length regulation and telomere position effect in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 3094–3105.
  • Sandell, L. L., and V. A. Zakian 1993. Loss of a yeast telomere: arrest, recovery and chromosome loss. Cell 75: 729–739.
  • Schulz, V. P., and V. A. Zakian 1994. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76: 145–155.
  • Shampay, J., J. W. Szostak, and E. H. Blackburn 1984. DNA sequences of telomeres maintained in yeast. Nature 310: 154–157.
  • Shore, D., and K. Nasmyth 1987. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51: 721–732.
  • Stavenhagen, J. B., and V. A. Zakian 1994. Internal tracts of telomeric DNA act as silencers in Saccharomyces cerevisiae. Genes Dev. 8: 1411–1422.
  • Steiner, B. R., K. Hidaka, and B. Futcher 1996. Association of the Est1 protein with telomerase activity in yeast. Proc. Natl. Acad. Sci. USA 93: 2817–2821.
  • Strahl-Bolsinger, S., A. Hecht, K. Luo, and M. Grunstein 1997. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11: 83–93.
  • Suzuki, Y., and M. Nishizaw 1994. The yeast GAL11 protein is involved in regulation of the structure and the position effect of telomeres. Mol. Cell. Biol. 14: 3791–3799.
  • Tommerup, H., A. Dousmanis, and T. de Lange 1994. Unusual chromatin in human telomeres. Mol. Cell. Biol. 14: 5777–5785.
  • van Steensel, B., and T. de Lange 1997. Control of telomere length by the human telomeric protein TRF1. Nature 385: 740–743.
  • Virta-Pearlman, V., D. K. Morris, and V. Lundblad 1996. Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev. 10: 3094–3104.
  • Walmsley, R. M., C. S. M. Chan, B.-K. Tye, and T. D. Petes 1984. Unusual DNA sequences associated with the ends of yeast chromosomes. Nature 310: 157–160.
  • Wang, M. M., and R. R. Reed 1993. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364: 121–126.
  • Wellinger, R. J., K. Ethier, P. Labrecque, and V. A. Zakian 1996. Evidence for a new step in telomere maintenance. Cell 85: 423–433.
  • Wellinger, R. J., A. J. Wolf, and V. A. Zakian 1993. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell 72: 51–60.
  • Wiley, E., and V. A. Zakian 1995. Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres. Genetics 139: 67–79.
  • Wotton, D., and D. Shore 1997. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11: 748–760.
  • Wright, J. H., D. E. Gottschling, and V. A. Zakian 1992. Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev. 6: 197–210.
  • Wright, J. H., and V. A. Zakian 1995. Protein-DNA interactions in soluble telosomes from Saccharomyces cerevisiae. Nucleic Acids Res. 23: 1454–1460.
  • Wright, W. E., V. M. Tesmer, K. E. Huffman, S. D. Levene, and J. W. Shay 1997. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11: 2801–2809.
  • Zakian, V. A. 1996. Structure, function and replication of Saccharomyces cerevisiae telomeres. Annu. Rev. Genet. 30: 141–172.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.