16
Views
56
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

The Yeast Telomere Length Counting Machinery Is Sensitive to Sequences at the Telomere-Nontelomere Junction

&
Pages 31-45 | Received 24 Mar 1998, Accepted 24 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Aparicio, O. M., and J. Gottschling 1994. Overcoming telomeric silencing: a transactivator competes to establish gene expression in a cell cycle-dependent way. Genes Dev. 8:1133–1146.
  • Bianchi, A., S. Smith, L. Chong, P. Elias, and J. de Lange 1997. TRF1 is a dimer and bends telomeric DNA. EMBO J. 16:1785–1794.
  • Brun, C., S. Marcand, and J. Gilson 1997. Proteins that bind to double-stranded regions of telomeric DNA. Trends Cell Biol. 7:317–324.
  • Buchman, A. R., N. F. Lue, and J. Kornberg 1988. Connections between transcriptional activators, silencers, and telomeres as revealed by functional analysis of a yeast DNA-binding protein. Mol. Cell. Biol. 8:5086–5099.
  • Conrad, M. N., J. H. Wright, A. J. Wolf, and J. Zakian 1990. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63:739–750.
  • Garvik, B., M. Carson, and J. Hartwell 1995. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15:6128–6138.
  • Gilson, E., M. Roberge, R. Giraldo, D. Rhodes, and J. Gasser 1993. Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites. J. Mol. Biol. 231:293–310.
  • Gotta, M., and J. Cockell 1997. Telomeres, not the end of the story. Bioessays 19:367–370.
  • Grandin, N., S. I. Reed, and J. Charbonneau 1997. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11:512–527.
  • Gravel, S., M. Larrivee, P. Labrecque, and J. Wellinger 1998. Yeast Ku as a regulator of chromosomal DNA end structure. Science 280:741–744.
  • Greider, C. W. 1996. Telomere length regulation. Annu. Rev. Biochem. 65:337–365.
  • Hardy, C. F. J., D. Balderes, and J. Shore 1992. Dissection of a carboxy-terminal region of the yeast regulatory protein RAP1 with effects on both transcriptional activation and silencing. Mol. Cell. Biol. 12:1209–1217.
  • Hardy, C. F. J., L. Sussel, and J. Shore 1992. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev. 6:801–814.
  • Hecht, A., T. Laroche, S. Strahl-Bolsinger, S. M. Gasser, and J. Grunstein 1995. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterchromatin in yeast. Cell 80:583–592.
  • Hecht, A., S. Strahl-Bolsinger, and J. Grunstein 1996. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383:92–95.
  • Henry, Y. A. L., A. Chambers, J. S. H. Tsang, A. J. Kingsman, and J. Kingsman 1990. Characterisation of the DNA binding domain of the yeast RAP1 protein. Nucleic Acids Res. 18:2617–2623.
  • Konig, P., R. Giraldo, L. Chapman, and J. Rhodes 1996. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomere DNA. Cell 85:125–136.
  • Kramer, K. M., and J. Haber 1993. New telomeres in yeast are initiated with a highly selected subset of TG1-3 repeats. Genes Dev. 7:2345–2356.
  • Krauskopf, A., and J. Blackburn 1996. Control of telomere growth by interactions of RAP1 with the most distal telomere repeats. Nature 383:354–357.
  • Kyrion, G., K. A. Boakye, and J. Lustig 1992. C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:5159–5173.
  • Kyrion, G., K. Liu, C. Liu, and J. Lustig 1993. RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. Genes Dev. 7:1146–1159.
  • Laman, H., D. Balderes, and J. Shore 1995. Disturbance of normal cell cycle progression enhances the establishment of transcriptional silencing in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:3608–3617.
  • Li, B., and J. Lustig 1996. A novel mechanism for telomere size control in Saccharomyces cerevisiae. Genes Dev. 10:1310–1326.
  • Lingner, J., T. R. Hughes, A. Shevchenko, M. Mann, V. Lundblad, and J. Cech 1997. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276:561–567.
  • Liu, C., X. Mao, and J. Lustig 1994. Mutational analysis defines a C-terminal tail domain of RAP1 essential for telomeric silencing in Saccharomyces cerevisiae. Genetics 138:1025–1040.
  • Lustig, A. J., S. Kurtz, and J. Shore 1990. Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science 250:549–553.
  • Lustig, A. J., C. Liu, C. Zhang, and J. Hanish 1996. Tethered Sir3p nucleates silencing at telomeres and internal loci in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2483–2495.
  • Makarov, V. L., Y. Hirose, and J. Langmore 1997. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88:657–666.
  • Marcand, S., E. Gilson, and J. Shore 1997. A protein-counting mechanism for telomere length regulation in yeast. Science 275:986–990.
  • McCarroll, R. M., and J. Fangman 1988. Time of replication of yeast centromeres and telomeres. Cell 54:505–513.
  • McEachern, M. J., and J. Blackburn 1995. Runaway telomere elongation caused by telomerase RNA gene mutations. Nature 376:403–409.
  • McElligott, R., and J. Wellinger 1997. The terminal DNA structure of mammalian chromosomes. EMBO J. 16:3705–3714.
  • Moretti, P., K. Freeman, L. Coodly, and J. Shore 1994. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev. 8:2257–2269.
  • Nugent, C. I., T. R. Hughes, N. F. Lue, and J. Lundblad 1996. Cdc13p: a single-stranded telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274:249–252.
  • Palladino, F., T. Laroche, E. Gilson, A. Axelrod, L. Pillus, and J. Gasser 1993. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75:543–555.
  • Pluta, A. F., and J. Zakian 1989. Recombination occurs during telomere formation in yeast. Nature 337:429–433.
  • Porter, S. E., P. W. Greenwell, K. B. Ritchie, and J. Petes 1996. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24:582–585.
  • Ray, A., and J. Runge 1998. The C terminus of the major yeast telomere binding protein Rap1p enhances telomere formation. Mol. Cell. Biol. 18:1284–1295.
  • Renauld, H., O. M. Aparicio, P. D. Zierath, B. L. Billington, S. K. Chhablani, and J. Gottschling 1993. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev. 7:1133–1145.
  • Runge, K. W., and J. Zakian 1989. Introduction of extra telomeric DNA sequences into Saccharomyces cerevisiae results in telomere elongation. Mol. Cell. Biol. 9:1488–1497.
  • Runge, K. W., and J. Zakian 1996. TEL2, an essential gene required for telomere length regulation and telomere position effect in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:3094–3105.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Schultz, V. Personal communication.
  • Shampay, J., and J. Blackburn 1988. Generation of telomere-length heterogeneity in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 85:534–538.
  • Strahl-Bolsinger, S., A. Hecht, K. Luo, and J. Grunstein 1997. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11:83–93.
  • Sussel, L., and J. Shore 1991. Separation of transcriptional activations and silencing functions of the RAP1-encoded repressor/activator protein 1: isolation of viable mutants affecting both silencing and telomere length. Proc. Natl. Acad. Sci. USA 88:7749–7753.
  • Tsukamoto, Y., J. Kato, and J. Ikeda 1997. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388:900–903.
  • van Steensel, B., and J. de Lange 1997. Control of telomere length by the human telomeric protein TRF1. Nature 385:740–743.
  • Wang, S. S., and J. Zakian 1990. Sequencing of Saccharomyces telomeres cloned using T4 DNA polymerase reveals two domains. Mol. Cell. Biol. 10:4415–4419.
  • Wellinger, R. J., K. Ethier, P. Labrecque, and J. Zakian 1996. Evidence for a new step in telomere maintenance. Cell 85:423–433.
  • Wellinger, R. W., A. J. Wolf, and J. Zakian 1993. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell 72:51–60.
  • Wiley, E. A., and J. Zakian 1995. Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres. Genetics 139:67–79.
  • Wotton, D., and J. Shore 1997. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11:748–760.
  • Wright, J., D. Gottschling, and J. Zakian 1992. Saccharomyces telomeres assume a non-nucleosomal structure. Genes Dev. 6:197–210.
  • Zakian, V. A. 1996. Structure, function and replication of Saccharomyces cerevisiae telomeres. Annu. Rev. Genet. 30:141–172.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.