39
Views
145
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Repressors and Upstream Repressing Sequences of the Stress-Regulated ENA1 Gene in Saccharomyces cerevisiae: bZIP Protein Sko1p Confers HOG-Dependent Osmotic Regulation

&
Pages 537-546 | Received 14 May 1998, Accepted 09 Oct 1998, Published online: 28 Mar 2023

REFERENCES

  • Alepuz, P. M., K. W. Cunningham, and J. Estruch 1997. Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Mol. Microbiol. 26:91–98.
  • Bartel, P. L., C.-T. Chien, R. Sternglanz, and J. Fields 1993. Elimination of false positives that arise in using the two-hybrid system. BioTechniques 14:920–924.
  • Brewster, J. L., T. de Valoir, N. D. Dwyer, E. Winter, and J. Gustin 1993. An osmosensing signal transduction pathway in yeast. Science 259:1760–1763.
  • Celenza, J. L., and J. Carlson 1986. A yeast gene that is essential for the release from glucose repression encodes a protein kinase. Science 233:1175–1180.
  • Comb, M., N. C. Birnberg, A. Seasholtz, E. Herbert, and J. Goodman 1986. A cyclic AMP- and phorbol ester-inducible DNA element. Nature 323:353–356.
  • Cunningham, K. W., and J. Fink 1994. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J. Cell Biol. 124:351–363.
  • Cyert, M. S., R. Kunisawa, D. Kaim, and J. Thorner 1991. Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase. Proc. Natl. Acad. Sci. USA 88:7376–7380.
  • Davis, T. N., M. S. Urdea, F. R. Masiarz, and J. Thorner 1986. Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell 47:423–431.
  • Degols, G., and J. Russell 1997. Discrete roles of the Spc1 kinase and the Atf1 transcription factor in the UV response of Schizosaccharomyces pombe. Mol. Cell. Biol. 17:3356–3363.
  • DeVit, M. J., J. A. Waddle, and J. Johnston 1997. Regulated nuclear translocation of the Mig1 glucose repressor. Mol. Biol. Cell 8:1603–1618.
  • Eng, W. K., L. Faucette, M. M. McLaughlin, R. Cafferkey, Y. Koltin, R. A. Morris, P. R. Young, R. K. Johnson, and J. Livi 1994. The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth. Gene 151:61–71.
  • Ferrando, A., S. J. Kron, G. Rios, G. R. Fink, and J. Serrano 1995. Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Mol. Cell. Biol. 15:5470–5481.
  • Garciadeblás, B., F. Rubio, F. J. Quintero, M. A. Bañuelos, R. Haro, and J. Rodríguez-Navarro 1993. Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol. Gen. Genet. 236:363–368.
  • Garrett-Engele, P., B. Moilanen, and J. Cyert 1995. Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar H+ ATPase. Mol. Cell. Biol. 15:4103–4114.
  • Gaxiola, R., I. F. de Larrinoa, J. M. Villalba, and J. Serrano 1992. A novel and conserved salt induced protein is an important determinant of salt-tolerance in yeast. EMBO J. 11:3157–3164.
  • Gietz, R. D., R. H. Schiestl, A. R. Willems, and J. Woods 1995. Studies on the transformation of intact yeast cells by the LiAc/ssDNA/PEG procedure. Yeast 11:355–360.
  • Güldener, U., S. Heck, T. Fiedler, J. Beinhauer, and J. Hegemann 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24:2519–2524.
  • Haro, R., B. Garciadeblas, and J. Rodriguez-Navarro 1991. A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett. 291:189–191.
  • Hohmann, S. 1997. Shaping up: the response of yeast to osmotic stress, p. 101–134. In S. Hohmann, W. H. Mager (ed.), Yeast stress responses. R. G. Landes Co., Austin, Tex.
  • Iordanov, M., K. Bender, T. Ade, W. Schmid, C. Sachsenmaier, K. Engel, M. Gaestel, H. J. Rahmsdorf, and J. Herrlich 1997. CREB is activated by UVC through a p38/HOG-1-dependent protein kinase. EMBO J. 16:1009–1022.
  • Kato, T., K. Okazaki, H. Murakami, S. Stettler, P. Fantes, and J. Okavama 1996. Stress signal, mediated by a HOG1-like MAP kinase, controls sexual development in fission yeast. FEBS Lett. 378:207–212.
  • Keleher, C. A., M. J. Redd, J. Schultz, M. Carlson, and J. Johnson 1992. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68:709–719.
  • Kobayashi, N., and J. McEntee 1993. Identification of cis and trans components of a novel heat shock regulatory pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:248–256.
  • Liu, Y., S. Ishii, M. Tokai, H. Tsutsumi, O. Ohke, R. Akada, K. Tanaka, E. Tsuchiya, S. Fukui, and J. Miyakawa 1991. The Saccharomyces cerevisiae genes (CMP1 and CMP2) encoding calmodulin binding proteins homologous to the catalytic subunit of mammalian protein phosphatase 2B. Mol. Gen. Genet. 227:52–59.
  • Lundin, M., J. O. Nehlin, and J. Ronne 1994. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol. Cell. Biol. 14:1979–1985.
  • Lutfiyya, L. L., and J. Johnston 1996. Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol. Cell. Biol. 16:4790–4797.
  • Maeda, T., S. M. Wurgler-Murphy, and J. Saito 1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245.
  • Marchler, G., C. Schüller, G. Adam, and J. Ruis 1993. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J. 12:1997–2003.
  • Márquez, J. A., and J. Serrano 1996. Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast. FEBS Lett. 382:89–92.
  • Márquez, J. A., A. Pascual-Ahuir, M. Proft, and J. Serrano 1998. The Ssn6-Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and -independent genes. EMBO J. 17:2543–2553.
  • Martínez-Pastor, M. T., G. Marchler, C. Schüller, A. Marchler-Bauer, H. Ruis, and J. Estruch 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J. 15:2227–2235.
  • Matheos, D. P., T. J. Kingsbury, U. S. Ahsan, and J. Cunningham 1997. Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev. 11:3445–3458.
  • Mendizabal, I., G. Rios, J. M. Mulet, R. Serrano, and J. de Larrinoa 1998. Yeast putative transcription factors involved in salt tolerance. FEBS Lett. 425:323–328.
  • Mendoza, I., F. Rubio, A. Rodriguez-Navarro, and J. Pardo 1994. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 269:8792–8796.
  • Millar, J. B. A., V. Buck, and J. Wilkinson 1995. Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev. 9:2117–2130.
  • Montminy, M. R., K. A. Sevarino, J. A. Wagner, G. Mandel, and J. Goodman 1986. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc. Natl. Acad. Sci. USA 83:6682–6686.
  • Nehlin, J. O., and J. Ronne 1990. Yeast MIG1 repressor is related to the mammalian early growth response and Wilm’s tumour finger proteins. EMBO J. 9:2891–2898.
  • Nehlin, J. O., M. Carlberg, and J. Ronne 1992. Yeast SKO1 gene encodes a bZIP protein that binds to the CRE motif and acts as a repressor of transcription. Nucleic Acids Res. 20:5271–5278.
  • Östling, J., M. Carlberg, and J. Ronne 1996. Functional domains in the Mig1 repressor. Mol. Cell. Biol. 16:753–761.
  • Östling, J., and J. Ronne 1998. Negative control of the Mig1p repressor by the Snf1p-dependent phosphorylation in the absence of glucose. Eur. J. Biochem. 252:162–168.
  • Posas, F., S. M. Wurgler-Murphy, T. Maeda, E. A. Witten, T. C. Thai, and J. Saito 1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86:865–875.
  • Proft, M. Unpublished results.
  • Quandt, K., K. Frech, H. Karas, E. Wingender, and J. Werner 1995. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23:4878–4884.
  • Rios, G., A. Ferrando, and J. Serrano 1997. Mechanisms of salt tolerance conferred by overexpression of the HAL1 gene in Saccharomyces cerevisiae. Yeast 13:515–528.
  • Schmitt, A. P., and J. McEntee 1996. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5777–5782.
  • Schüller, C., J. L. Brewster, M. R. Alexander, M. C. Gustin, and J. Ruis 1994. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 13:4382–4389.
  • Schüller, H.-J., A. Hahn, F. Tröster, A. Schütz, and J. Schweitzer 1992. Coordinate genetic control of yeast fatty acid synthase genes FAS1 and FAS2 by an upstream activation site common to genes involved in membrane lipid biosynthesis. EMBO J. 11:107–114.
  • Serrano, R. 1996. Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int. Rev. Cytol. 165:1–52.
  • Serrano, R., J. A. Márquez, G. Rios 1997. Crucial factors in salt stress tolerance, p. 147–169. In S. Hohmann, W. H. Mager (ed.), Yeast stress responses. R. G. Landes Co., Austin, Tex.
  • Shiozaki, K., and J. Russell 1995. Cell cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378:739–743.
  • Shiozaki, K., and J. Russell 1995. Counteractible roles of protein phosphatase 2C (PP2C) and a MAP kinase kinase homolog in the osmoregulation of fission yeast. EMBO J. 14:492–502.
  • Shiozaki, K., and J. Russell 1996. Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev. 10:2276–2288.
  • Stathopoulos, A. M., and J. Cyert 1997. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev. 11:3432–3444.
  • Takeda, T., T. Toda, K. Kominami, A. Kohnosu, M. Yanagida, and J. Jones 1995. Schizosaccharomyces pombe atf+ encodes a transcription factor required for sexual development and entry into stationary phase. EMBO J. 14:6193–6208.
  • Tan, Y., J. Rouse, A. Zhang, S. Cariati, P. Cohen, and J. Comb 1997. FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J. 15:4629–4642.
  • Treitel, M. A., and J. Carlson 1995. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc. Natl. Acad. Sci. USA 92:3132–3136.
  • Tzamarias, D., and J. Struhl 1994. Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Nature 369:758–761.
  • Varela, J. C. S., U. M. Praekelt, P. A. Meacock, R. J. Planta, and J. Mager 1995. The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol. Cell. Biol. 15:6232–6245.
  • Vincent, A. C., and J. Struhl 1992. ACR1, a yeast ATF/CREB repressor. Mol. Cell. Biol. 12:5394–5405.
  • Wallis, J. W., G. Chrebet, G. Brodsky, M. Rolfe, and J. Rothstein 1989. A hyper-recombination mutation in S. cerevisiae identifies a novel eucaryotic topoisomerase. Cell 58:409–419.
  • Warbrick, E., and J. Fantes 1991. The Wis1 protein kinase is a dose-dependent regulator of mitosis in Schizosaccharomyces pombe. EMBO J. 10:4291–4299.
  • Wieland, J., A. M. Nitsche, J. Strayle, H. Steiner, and J. Rudolph 1995. The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane. EMBO J. 14:3870–3882.
  • Wilkinson, M. G., M. Samuels, T. Takeda, W. M. Toone, J.-C. Shieh, T. Toda, J. B. A. Millar, and J. Jones 1996. The Atf transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev. 10:2289–2301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.