55
Views
337
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

The Nuclease Activity of Mre11 Is Required for Meiosis but Not for Mating Type Switching, End Joining, or Telomere Maintenance

, &
Pages 556-566 | Received 25 Aug 1998, Accepted 29 Sep 1998, Published online: 28 Mar 2023

REFERENCES

  • Ajimura, M., S.-H. Leem, and J. Ogawa 1993. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133:51–66.
  • Alani, E., R. Padmore, and J. Kleckner 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419–436.
  • Bai, Y., and J. Symington 1996. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 10:2025–2037.
  • Bergerat, A., B. de Massy, D. Gadelle, P.-C. Varoutas, A. Nicolas, and J. Forterre 1997. An atypical topoisomerase II from archae with implications for meiotic recombination. Nature 386:414–417.
  • Bezzubova, O., A. Silbergleit, Y. Yamaguchi-Iwai, S. Takeda, and J. Buerstedde 1997. Reduced X-ray resistance and homologous recombination frequencies in a RAD54−/− mutant of the chicken DT40 cell line. Cell 89:185–193.
  • Blunt, T., N. J. Finnie, G. E. Taccioli, G. C. M. Smith, J. Demengeot, T. M. Gottlieb, R. Mizuta, A. J. Varghese, F. W. Alt, P. A. Jeggo, and J. Jackson 1995. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80:813–823.
  • Boulton, S. J., and J. Jackson 1998. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17:1819–1828.
  • Boulton, S. J., and J. Jackson 1996. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15:5093–5103.
  • Cao, L., E. Alani, and J. Kleckner 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61:1089–1101.
  • Carney, J. P., R. S. Maser, H. Olivares, E. M. Davis, M. Le Beau, J. R. Yates, L. Hays, W. F. Morgan, and J. Petrini 1998. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93:477–486.
  • Chepurnaya, O. V., S. A. Kozhin, V. T. Peshekhonov, and J. Korolev 1995. RAD58 (XRS4)—a new gene in the RAD52 epistasis group. Curr. Genet. 28:274–279.
  • Chu, G. 1997. Double strand break repair. J. Biol. Chem. 272:24097–24100.
  • Connelly, J. C., E. S. de Leau, E. A. Okely, and J. Leach 1997. Overexpression, purification and characterization of the SbcCD protein from Escherichia coli. J. Biol. Chem. 272:19819–19826.
  • Connelly, J. C., and J. Leach 1996. The sbcC and sbcD genes of Escherichia coli encode a nuclease involved in palindrome inviability and genetic recombination. Genes Cells 1:285–291.
  • Dolganov, G. M., R. S. Maser, A. Novikov, L. Tosto, S. Chong, D. A. Bressan, and J. Petrini 1996. Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol. Cell. Biol. 16:4832–4841.
  • Erdeniz, N., U. H. Mortensen, and J. Rothstein 1997. Cloning-free PCR-based allele replacement methods. Genome Res. 7:1174–1183.
  • Essers, J., R. W. Hendriks, S. M. A. Swagemakers, C. Troelstra, J. de Wit, D. Bootsma, J. H. J. Hoeijmakers, and J. Kanaar 1997. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89:195–204.
  • Game, J., and J. Mortimer 1974. A genetic study of X-ray sensitive mutants in yeast. Mutat. Res. 24:281–292.
  • Goldberg, J., H. Huang, Y. Kwon, P. Greengard, A. Nairn, and J. Kuriyan 1995. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 376:745–753.
  • Grawunder, U., M. Wilm, X. Wu, P. Kulesza, T. E. Wilson, M. Mann, and J. Lieber 1997. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388:492–495.
  • Huang, H.-B., A. Horiuchi, J. Goldberg, P. Greengard, and J. Nairn 1997. Site-directed mutagenesis of amino acid residues of protein phosphatase 1 involved in catalysis and inhibitor binding. Proc. Natl. Acad. Sci. USA 94:3530–3535.
  • Ito, H., Y. Fukada, K. Murata, and J. Kimura 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Ivanov, E., V. Korolev, and J. Fabre 1992. XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132:651–664.
  • Ivanov, E. L., N. Sugawara, C. I. White, F. Fabre, and J. Haber 1994. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:3414–3425.
  • Johnston, M., and J. Davis 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440–1448.
  • Johzuka, K., and J. Ogawa 1995. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139:1521–1532.
  • Keeney, S., C. N. Giroux, and J. Kleckner 1997. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384.
  • Kirchgessner, C. U., C. K. Patil, J. W. Evans, C. A. Cuomo, L. M. Fried, T. Carter, M. A. Oettinger, and J. Brown 1995. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 267:1178–1183.
  • Kironmai, K. M., and J. Muniyappa 1997. Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae. Genes Cells 2:443–455.
  • Leach, D. Personal communication.
  • Lees-Miller, S. P., R. Godbout, D. W. Chan, M. Weinfeld, R. S. Day, G. M. Barron, and J. Allalunis-Turner 1995. Absence of p350 subunit of DNA-activated protein kinase from a radiosensitive human cell line. Science 267:1183–1185.
  • Li, Z., T. Otevrel, Y. Gao, H.-L. Cheng, B. Seed, T. D. Stamato, G. E. Taccioli, and J. Alt 1995. The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell 83:1079–1089.
  • Maser, R. S., K. J. Monsen, B. E. Nelms, and J. Petrini 1997. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell. Biol. 17:6087–6096.
  • McKee, A. H. Z., and J. Kleckner 1997. A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146:797–815.
  • Milne, G. T., S. Jin, K. Shannon, and J. Weaver 1996. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4189–4198.
  • Mitchell, D. A., T. K. Marshall, and J. Deschenes 1993. Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 9:715–723.
  • Moore, J. K., and J. Haber 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2164–2173.
  • Nairz, K., and J. Klein 1997. mre11S—a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev. 11:2272–2290.
  • Nelms, B. E., R. S. Maser, J. F. MacKay, M. G. Lagally, and J. Petrini 1998. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280:590–592.
  • Nugent, C. I., G. Bosco, L. O. Ross, S. K. Evans, A. P. Salinger, J. K. Moore, J. E. Haber, and J. Lundblad 1998. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8:657–660.
  • Ogawa, T., A. Shinohara, A. Nabetani, T. Ikeya, X. Yu, E. H. Egelman, and J. Ogawa 1993. RecA-like recombination proteins in eukaryotes: functions and structures of RAD51 genes. Cold Spring Harbor Symp. Quant. Biol. 58:567–576.
  • Ogawa, T., and H. Ogawa. Personal communication.
  • Paull, T. T., and J. Gellert 1998. The 3′ to 5′ exonuclease activity of Mre11 facilitates repair of DNA double-strand breaks. Mol. Cell 1:969–979.
  • Petes, T. D., R. E. Malone, L. S. Symington 1991. Recombination in yeast I: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Petrini, J. H. J., M. E. Walsh, C. DiMare, X.-N. Chen, J. R. Korenberg, and J. Weaver 1995. Isolation and characterization of the human MRE11 homologue. Genomics 29:80–86.
  • Porter, S. E., P. W. Greenwell, K. B. Ritchie, and J. Petes 1996. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24:582–585.
  • Prinz, S., A. Amon, and J. Klein 1997. Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146:781–795.
  • Rathmell, W. K., and J. Chu 1994. A DNA end-binding factor involved in double-strand break repair and V(D)J recombination. Mol. Cell. Biol. 14:4741–4748.
  • Raymond, W. E., and J. Kleckner 1993. RAD50 protein of S. cerevisiae exhibits ATP-dependent DNA binding. Nucleic Acids Res. 21:3851–3856.
  • Roth, D. B., P. B. Nakajima, J. P. Menetski, M. J. Bosma, and J. Gellert 1992. V(D)J recombination in mouse thymocytes: double-strand breaks near T cell receptor delta rearrangement signals. Cell 69:41–53.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Schiestl, R. H., J. Zhu, and J. Petes 1994. Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:4493–4500.
  • Sharples, G. J., and J. Leach 1995. Structural and functional similarities between the SbcCD proteins of Escherichia coli and the RAD50 and MRE11 (RAD32) recombination and repair proteins of yeast. Mol. Microbiol. 17:1215–1220.
  • Sherman, F., G. Fink, J. Hicks 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shinohara, A., H. Ogawa, and J. Ogawa 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470.
  • Siede, W., A. A. Friedl, I. Dianova, F. Eckardt-Schupp, and J. Friedberg 1996. The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142:91–102.
  • Strathern, J. N., A. J. S. Klar, J. B. Hicks, J. A. Abraham, J. M. Ivy, K. A. Nasmyth, and J. McGill 1982. Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31:183–192.
  • Sugarawa, N., E. L. Ivanov, J. Fishman-Lobell, B. L. Ray, and J. Haber 1995. DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature 373:84–86.
  • Sun, H., D. Treco, N. P. Schultes, and J. Szostak 1989. Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90.
  • Sun, H., D. Treco, and J. Szostak 1991. Extensive 3′-overhang, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64:1155–1161.
  • Symington, L. S. Homologous recombination is essential for the viability of rad27 mutants. Nucleic Acids Res., in press.
  • Taccioli, G., T. M. Gottlieb, T. Blunt, A. Priestly, J. Demengeot, R. Mizuta, A. R. Lehmann, F. W. Alt, S. P. Jackson, and J. Jeggo 1994. Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science 265:1442–1445.
  • Tishkoff, D. X., N. Filosi, G. M. Gaida, and J. Kolodner 1997. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from mismatch repair. Cell 88:253–263.
  • Trujillo, K. M., S.-S. F. Yuan, E. Y.-H. Lee, and J. Sung 1998. Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J. Biol. Chem. 273:21447–21450.
  • Tsubouchi, H., and J. Ogawa 1998. A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol. Cell. Biol. 18:260–268.
  • Tsukamoto, Y., J. Kato, and J. Ikeda 1997. Budding yeast Rad50, Mre11, Xrs2, and Hdf1, but not Rad52, are involved in the formation of deletions on a dicentric plasmid. Mol. Gen. Genet. 255:543–547.
  • Tsukamoto, Y., J. Kato, and J. Ikeda 1997. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388:900–903.
  • Varon, R., C. Vissinga, M. Platzer, K. M. Cerosaletti, K. H. Chrzanowska, K. Saar, G. Beckmann, E. Seemanova, P. R. Cooper, N. J. Nowak, M. Stumm, C. M. R. Weemaes, R. A. Gatti, R. K. Wilson, M. Digweed, A. Rosenthal, K. Sperling, P. Concannon, and J. Reis 1998. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93:467–476.
  • White, C. I., and J. Haber 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9:663–673.
  • Wilson, T. E., U. Grawunder, and J. Lieber 1997. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388:495–498.
  • Zhuo, S., J. C. Clemens, R. L. Stone, and J. Dixon 1994. Mutational analysis of a Ser/Thr phosphatase. J. Biol. Chem. 269:26234–26238.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.