8
Views
24
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Gbp1p, a Protein with RNA Recognition Motifs, Binds Single-Stranded Telomeric DNA and Changes Its Binding Specificity upon Dimerization

, &
Pages 923-933 | Received 18 Jun 1998, Accepted 20 Oct 1998, Published online: 28 Mar 2023

REFERENCES

  • Ausubel F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl 1989. Current protocols in molecular biology. John Wiley & Sons, New York, N.Y.
  • Basu, A., B. Dong, A. R. Krainer, and J. Howe 1997. The intracisternal A-particle proximal enhancer-binding protein activates transcription and is identical to the RNA- and DNA-binding protein p54nrb/NonO. Mol. Cell. Biol. 17:677–686.
  • Bianchi, A., S. Smith, L. Chong, P. Elias, and J. de Lange 1997. TRF1 is a dimer and bends telomeric DNA. EMBO J. 16:1785–1794.
  • Broccoli, D., A. Smogorzewska, L. Chong, and J. de Lange 1997. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 17:231–235.
  • Burd, C. G., and J. Dreyfuss 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265:615–621.
  • Busch, S. J., and J. Sassone-Corsi 1990. Dimers, leucine zippers and DNA-binding domains. Trends Genet. 6:36–40.
  • Caceres, J. F., S. Stamm, D. M. Helfman, and J. Krainer 1994. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265:1706–1709.
  • Cardenas, M., A. Bianchi, and J. de Lange 1993. A Xenopus egg factor with DNA-binding properties characteristic of terminus-specific telomeric proteins. Genes Dev. 7:883–894.
  • Cartegni, L., M. Maconi, E. Morandi, F. Cobianchi, S. Riva, and J. Biamonti 1996. hnRNP A1 selectively interacts through its Gly-rich domain with different RNA-binding proteins. J. Mol. Biol. 259:337–348.
  • Casas-Finet, J. R., J. D. Smith, A. Kumar, J. G. Kim, S. H. Wilson, and J. Karpel 1993. Mammalian heterogeneous ribonucleoprotein A1 and its constituent domains. J. Mol. Biol. 229:873–889.
  • Cassidy-Stone, A., and S. Schultz. Personal communication.
  • Chabot, B., M. Blanchette, I. Lapierre, and J. La Branche 1997. An intron element modulating 5′ splice site selection in the hnRNP A1 pre-mRNA interacts with hnRNP A1. Mol. Cell. Biol. 17:1776–1786.
  • DeAngelo, D. J., J. DeFalco, L. Rybacki, and J. Childs 1995. The embryonic enhancer-binding protein SSAP contains a novel DNA-binding domain which has homology to several RNA-binding proteins. Mol. Cell. Biol. 15:1254–1264.
  • Enomoto, S., P. D. McCune-Zierath, M. Gerami-Nejad, M. A. Sanders, and J. Berman 1997. RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev. 11:358–370.
  • Froelich-Ammon, S. J., B. A. Dickinson, J. M. Bevilacqua, S. C. Schultz, and J. Cech 1998. Modulation of telomerase activity by telomere DNA-binding proteins in Oxytricha. Genes Dev. 12:1504–1514.
  • Gaillard, C., E. Cabannes, and J. Strauss 1994. Identity of the RNA-binding protein K of hnRNP particles with protein H16, a sequence-specific single strand DNA-binding protein. Nucleic Acids Res. 22:4183–4186.
  • Garvik, B., M. Carson, and J. Hartwell 1995. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15:6128–6138.
  • Glass, C. K. 1994. Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr. Rev. 15:391–407.
  • Gottschling, D. E., and J. Zakian 1988. DNA-protein interactions at telomeres in ciliated protozoans. Adv. Cell Biol. 2:291–307.
  • Grandin, N., S. I. Reed, and J. Charbonneau 1997. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11:512–527.
  • Ishikawa, F., M. J. Matunis, G. Dreyfuss, and J. Cech 1993. Nuclear proteins that bind the pre-mRNA 3′ splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n. Mol. Cell. Biol. 13:4301–4310.
  • Iyadurai, S., S. Enomoto, and J. Berman. Unpublished data.
  • Kenan, D. J., C. C. Query, and J. Keene 1991. RNA recognition: towards identifying determinants of specificity. Trends Biochem. Sci. 16:214–220.
  • Klobutcher, L. A., M. T. Swanton, P. Donini, and J. Prescott 1981. All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3′ terminus. Proc. Natl. Acad. Sci. USA 78:3015–3019.
  • Koerner, T. J., J. E. Hill, A. M. Myers, and J. Tzagoloff 1991. High-expression vectors with multiple cloning sites for construction of trpE fusion genes: pATH vectors. Methods Enzymol. 194:477–490.
  • Konkel, L. M. C., S. Enomoto, E. Chamberlai, P. McCune-Zierath, S. J. P. Iyadura, and J. Berman 1995. A class of single-stranded telomeric DNA-binding proteins required for Rap1p localization in yeast nuclei. Proc. Natl. Acad. Sci. USA 92:5558–5562.
  • Kurenova, E. V., and J. Mason 1997. Telomere functions. A review. Biochemistry 62:1242–1253.
  • LaBranche, H., S. Dupuis, Y. Ben-David, M.-R. Bani, R. J. Wellinger, and J. Chabot 1998. Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nat. Genet. 19:199–202.
  • Lin, J.-J., and J. Zakian 1996. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc. Natl. Acad. Sci. USA 93:13760–13765.
  • Lin, J. J., and J. Zakian 1994. Isolation and characterization of two Saccharomyces cerevisiae genes that encode proteins that bind to (TG1–3)n single strand telomeric DNA in vitro. Nucleic Acids Res. 22:4906–4913 (Erratum, 22:5516.)
  • Longtine, M. S., N. M. Wilson, M. E. Petracek, and J. Berman 1989. A yeast telomere binding activity binds to two related telomere sequence motifs and is indistinguishable from RAP1. Curr. Genet. 16:225–239.
  • Lowell, J. E., and J. Pillus 1998. Telomere tales: chromatin, telomerase and telomere function in Saccharomyces cerevisiae. Cell. Mol. Life Sci. 54:32–49.
  • McKay, S. J., and J. Cooke 1992. hnRNP A2/B1 binds specifically to single-stranded vertebrate telomeric repeat TTAGGGn. Nucleic Acids Res. 20:1387–1391.
  • Merrill, B. M., K. L. Stone, F. Cobianchi, S. H. Wilson, and J. Williams 1988. Phenylalanines that are conserved among several RNA-binding proteins form part of a nucleic acid-binding pocket in the A1 heterogeneous nuclear ribonucleoprotein. J. Biol. Chem. 263:3307–3313.
  • Moyzis, R. K., J. M. Buckingham, L. S. Cram, M. Dani, L. L. Deaven, M. D. Jones, J. Meyne, R. L. Raliff, and J. Wu 1988. A highly conserved repetitive sequence (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA 85:6622–6626.
  • Nadler, S. G., B. M. Merrill, W. J. Roberts, K. M. Keating, M. J. Lisbin, S. F. Barnett, S. H. Wilson, and J. Williams 1991. Interactions of the A1 heterogeneous nuclear ribonucleoprotein and its proteolytic derivative, UP1, with RNA and DNA: evidence for multiple RNA binding domains and salt-dependent binding mode transitions. Biochemistry 30:2968–2976.
  • Nugent, C. I., T. R. Hughes, N. F. Lue, and J. Lundblad 1996. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274:249–252.
  • Pabo, C. O., and J. Sauer 1984. Protein-DNA recognition. Annu. Rev. Biochem. 53:293–321.
  • Petracek, M. E., and J. Berman 1992. Chlamydomonas reinhardtii telomere repeats form unstable structures involving guanine-guanine base pairs. Nucleic Acids Res. 20:89–95.
  • Petracek, M. E., L. M. C. Konkel, M. L. Kable, and J. Berman 1994. A Chlamydomonas protein that binds single-stranded G-strand telomere DNA. EMBO J. 13:3648–3658.
  • Petracek, M. E., P. A. Lefebvre, C. D. Silflow, and J. Berman 1990. Chlamydomonas telomere sequences are A+T-rich but contain three consecutive G-C base pairs. Proc. Natl. Acad. Sci. USA 87:8222–8226.
  • Prescott, J., and J. Blackburn 1997. Functionally interacting telomerase RNAs in the yeast telomerase complex. Genes Dev. 11:2790–2800.
  • Price, C. M. 1990. Telomere structure in Euplotes crassus: characterization of DNA-protein interactions and isolation of a telomere-binding protein. Mol. Cell. Biol. 10:3421–3431.
  • Price, C. M., and J. Cech 1987. Telomeric DNA-protein interactions of Oxytricha macronuclear DNA. Genes Dev. 1:783–793.
  • Price, C. M., and J. Cech 1989. Properties of the telomeric DNA-binding protein from Oxytricha nova. Biochemistry 28:769–774.
  • Richards, E. J., and J. Ausubel 1988. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127–136.
  • Shampay, J., J. W. Szostak, and J. Blackburn 1984. DNA sequences of telomeres maintained in yeast. Nature 310:154–157.
  • Sheng, H., Z. Hou, T. Schierer, D. L. Dobbs, and J. Henderson 1995. Identification and characterization of a putative telomere end-binding protein from Tetrahymena thermophila. Mol. Cell. Biol. 15:1144–1153.
  • Van Steensel, B., A. Smogorzewska, and J. de Lange 1998. TRF2 protects human telomeres from end-to-end fusions. Cell 92:401–413.
  • Virta-Pearlman, V., D. K. Morris, and J. Lundblad 1996. Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev. 10:3094–3104.
  • Weighardt, F., G. Biamonti, and J. Riva 1996. The roles of heterogeneous nuclear ribonucleoproteins (hnRNP) in RNA metabolism. Bioessays 18:747–756.
  • Wellinger, R. J., A. J. Wolf, and J. Zakian 1993. Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase. Cell 72:51–60.
  • Wright, W. E., V. M. Tesmer, K. E. Huffman, S. D. Levene, and J. Shay 1997. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11:2801–2809.
  • Zalensky, A. O., N. V. Tomilin, I. A. Zalenskaya, R. L. Teplitz, and J. Bradbury 1997. Telomere-telomere interactions and candidate telomere binding protein(s) in mammalian sperm cells. Exp. Cell Res. 232:29–41.
  • Zhong, Z., L. Shiue, S. Kaplan, and J. de Lange 1992. A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol. Cell. Biol. 12:4834–4843.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.