16
Views
93
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

The RAG1 Homeodomain Recruits HMG1 and HMG2 To Facilitate Recombination Signal Sequence Binding and To Enhance the Intrinsic DNA-Bending Activity of RAG1-RAG2

, , , , &
Pages 6532-6542 | Received 10 Feb 1999, Accepted 28 Jun 1999, Published online: 28 Mar 2023

REFERENCES

  • Affolter, M., A. Percival-Smith, M. Muller, M. Billeter, Y. Q. Qian, G. Otting, K. Wuthrich, and J. Gehring 1991. Similarities between the homeodomain and the Hin recombinase DNA binding domain. Cell 64:879–880.
  • Agrawal, A., and J. Schatz 1997. RAG1 and RAG2 form a stable post-cleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 89:43–53.
  • Bellon, S. F., K. K. Rodgers, D. G. Schatz, J. E. Coleman, and J. Steitz 1997. Crystal structure of the Rag1 dimerization domain reveals multiple zinc-binding motifs including a novel zinc binuclear cluster. Nat. Struct. Biol. 4:586–591.
  • Bernstein, R. M., S. F. Schluter, H. Bernstein, and J. Marchalonis 1996. Primordial emergence of the recombination activating gene 1 (RAG1): sequence of the complete shark gene indicates homology to microbial integrases. Proc. Natl. Acad. Sci. USA 93:9454–9459.
  • Besmer, E., J. Mansilla-Soto, S. Cassard, D. J. Sawchuk, G. Brown, M. Sadofsky, S. M. Lewis, M. C. Nussenzweig, and J. Cortes 1998. Hairpin coding end opening is mediated by RAG1 and RAG2 proteins. Mol. Cell 2:817–828.
  • Bianchi, M. E. 1994. Prokaryotic HU and eukaryotic HMG1: a kinked relationship. Mol. Microbiol. 61:1011–1051.
  • Bianchi, M. E. Unpublished data.
  • Bianchi, M. E., and J. Beltrame 1998. Flexing DNA: HMG-box proteins and their partners. Am. J. Hum. Genet. 63:1573–1577.
  • Bianchi, M. E., M. Beltrame, and J. Paonessa 1989. Specific recognition of cruciform DNA by nuclear protein HMG1. Science 243:1056–1059.
  • Bianchi, M. E., L. Falciola, S. Ferrari, and J. Lilley 1992. The DNA binding site of HMG1 protein is composed of two similar segments, both of which have counterparts in other eukaryotic regulatory proteins. EMBO J. 11:1055–1063.
  • Bogue, M., and J. Roth 1996. Mechanism of V(D)J recombination. Curr. Opin. Immunol. 8:175–180.
  • Boonyaratanakornkit, V., V. Melvin, P. Prendergast, M. Altmann, L. Ronfani, M. E. Bianchi, L. Taraseviciene, S. K. Nordeen, E. A. Allegretto, and J. Edwards 1998. High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol. Cell. Biol. 18:4471–4487.
  • Bustin, M., and J. Reeves 1996. High mobility group chromosomal proteins: architectural components that facilitate chromatin function. Prog. Nucleic Acid Res. Mol. Biol. 54:35–100.
  • Calogero, S., F. Grassi, A. Aguzzi, T. Voigtländer, P. Ferrier, S. Ferrari, and J. Bianchi 1999. The lack of chromosomal protein HMG1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat. Genet. 22:276–280.
  • Difilippantonio, M., C. J. McMahan, Q. M. Eastman, E. Spanopoulou, and J. Schatz 1996. RAG1 mediates signal sequence recognition and recruitment of RAG2 in V(D)J recombination. Cell 87:253–262.
  • Eastman, Q. M., T. M. J. Leu, and J. Schatz 1996. Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature 380:85–88.
  • Falciola, L., F. Spada, S. Calogero, G. Längst, R. Voit, I. Grummt, and J. Bianchi 1997. High mobility group 1 (HMG1) protein is not stably associated with the chromosomes of somatic cells. J. Cell Biol. 137:19–26.
  • Falvo, J. V., D. Thanos, and J. Maniatis 1995. Reversal of intrinsic DNA bends in the IFN-β gene enhancer by transcription factors and the architectural protein HMG-I(Y). Cell 83:1101–1111.
  • Ferrari, S., V. R. Harley, A. Pontiggia, P. N. Goodfellow, R. Lovell-Badge, and J. Bianchi 1992. SRY, like HMG1, recognizes sharp angles in DNA. EMBO J. 11:4497–4506.
  • Ge, H., and J. Roeder 1994. The high mobility group protein HMG1 can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein. J. Biol. Chem. 269:17136–17140.
  • Grawunder, U., R. B. West, and J. Lieber 1998. Antigen receptor gene rearrangement. Curr. Opin. Immunol. 10:172–180.
  • Grawunder, U., M. Wilm, X. Wu, P. Kulesza, T. E. Wilson, M. Mann, and J. Lieber 1997. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388:492–495.
  • Grosschedl, R. 1995. Higher-order nucleoprotein complexes in transcription analogies with site-specific recombination. Curr. Opin. Cell Biol. 5:362–370.
  • Haykinson, M. H., and J. Johnson 1993. DNA looping and the helical repeat in vitro and in vivo: effect of HU protein and enhancer location of Hin invertasome assembly. EMBO J. 12:2503–2512.
  • Hiom, K., and J. Gellert 1997. A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage. Cell 88:65–72.
  • Hiom, K., and J. Gellert 1998. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell 1:1011–1019.
  • Jackson, S. P., and J. Jeggo 1995. DNA double strand break repair and V(D)J recombination: involvement of DNA-PK. Trends Biochem. Sci. 20:412–415.
  • Jayaraman, L., N. C. Moorthy, K. G. K. Murthy, J. L. Manley, M. Bustin, and J. Prives 1998. High mobility group protein-1 (HMG1) is a unique activator of p53. Genes Dev. 12:462–472.
  • Kim, D. R., and J. Oettinger 1998. Functional analysis of coordinated cleavage in V(D)J recombination. Mol. Cell. Biol. 18:4679–4688.
  • Kim, J., C. Zwieb, C. Wu, and J. Adhya 1989. Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector. Gene 85:15–23.
  • Kwon, J., A. N. Imbalzano, A. Matthews, and J. Oettinger 1998. Accessibility of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. Mol. Cell 2:829–839.
  • Lavoie, B. D., and J. Chaconas 1990. Immunoelectron microscopic analysis of the A, B and HU protein content of bacteriophage Mu transposomes. J. Biol. Chem. 265:1623–1627.
  • Lavoie, B. D., and J. Chaconas 1994. A second high affinity binding site in the phage Mu transposome. J. Biol. Chem. 269:15571–15576.
  • Lewis, S. M. 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56:27–150.
  • McBlane, J. F., D. C. van Gent, D. A. Ramsden, C. Romeo, C. A. Cuomo, M. Gellert, and J. Oettinger 1995. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83:387–395.
  • Nagaki, S., M. Yamamoto, Y. Yumoto, H. Shirakawa, M. Yoshida, and J. Teraoka 1998. Non-histone chromosomal proteins HMG1 and 2 enhance ligation reaction of DNA double-strand breaks. Biochem. Biophys. Res. Commun. 246:137–141.
  • Nagawa, F., K.-I. Ishiguro, A. Tsuboi, T. Yoshida, A. Ishikawa, T. Takemori, A. J. Otsuka, and J. Sakano 1998. Footprint analysis of the RAG protein recombination signal sequence complex for V(D)J type recombination. Mol. Cell. Biol. 18:655–663.
  • Oettinger, M. A., D. G. Schatz, C. Gorka, and J. Baltimore 1990. RAG1 and RAG2, adjacent genes that synergistically activate V(D)J recombination. Science 248:1517–1523.
  • Oñate, S. A., P. Prendergast, J. P. Wagner, M. Nissen, R. Reeves, D. E. Pettijohn, and J. Edwards 1994. The DNA bending protein HMG-1 enhances progesterone receptor binding to its target DNA sequences. Mol. Cell. Biol. 14:3376–3391.
  • Paull, T. T., M. J. Haykinson, and J. Johnson 1993. The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev. 7:1521–1534.
  • Pil, P. M., C. S. Chow, and J. Lippard 1993. High-mobility-group 1 protein mediates DNA bending as determined by ring closures. Proc. Natl. Acad. Sci. USA 90:9465–9469.
  • Pil, P. M., and J. Lippard 1992. Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science 256:234–236.
  • Rodgers, K. K., Z. Bu, K. G. Fleming, D. G. Schatz, D. M. Engelman, and J. Coleman 1996. A zinc-binding domain involved in the dimerization of Rag1. J. Mol. Biol. 260:70–84.
  • Rodgers, K. K., I. J. Villey, L. Ptaszek, E. Corbett, D. G. Schatz, and J. Coleman 1999. A dimer of the lymphoid protein RAG1 recognizes the recombination signal sequence and the complex stably incorporates the high mobility group protein HMG2. Nucleic Acids Res. 27:2938–2946.
  • Sadofsky, M. J., J. E. Hesse, J. F. McBlane, and J. Gellert 1993. Expression and V(D)J recombination activity of mutated Rag-1 proteins. Nucleic Acids Res. 21:5644–5650.
  • Santagata, S., V. Aidinis, and J. Spanopoulou 1998. The effect of Me2+ cofactors at the initial stages of V(D)J recombination. J. Biol. Chem. 273:16325–16331.
  • Sawchuk, D. J., F. Weis-Garcia, S. Malik, E. Besmer, M. Bustin, M. C. Nussenweig, and J. Cortes 1997. V(D)J recombination: modulation of RAG1 and RAG2 cleavage activity on 12/23 substrates by whole cell extract and DNA bending proteins. J. Exp. Med. 185:2025–2032.
  • Schatz, D. G., M. A. Oettinger, and J. Baltimore 1989. The V(D)J recombination activating gene RAG1. Cell 59:1035–1048.
  • Shockett, P. E., and J. Schatz 1999. DNA hairpin opening mediated by the RAG1 and RAG2 proteins. Mol. Cell. Biol. 19:3674–3683.
  • Silver, D. P., E. Spanopoulou, R. C. Mulligan, and J. Baltimore 1993. Dispensable sequence motifs in the Rag-1 and Rag-2 genes for plasmid V(D)J recombination. Proc. Natl. Acad. Sci. USA 90:6100–6104.
  • Spanopoulou, E., F. Zaitseva, F.-H. Wang, S. Santagata, D. Baltimore, and J. Panayotou 1996. The homeodomain region of RAG1 reveals the parallel mechanisms of bacterial and V(D)J recombination. Cell 87:263–276.
  • Sutrias-Grau, M., M. E. Bianchi, and J. Bernués 1999. HMG1 interacts with the core domain of human TBP and interferes with TFIIB within the pre-initiation complex. J. Biol. Chem. 274:1628–1634.
  • Swanson, P., and J. Desiderio 1998. V(D)J recombination signal recognition: distinct, overlapping DNA-protein contacts in complexes containing RAG1 with and without RAG2. Immunity 9:115–125.
  • Thanos, D., and J. Maniatis 1992. The high mobility group protein HMG-I(Y) is required for NF-κB-dependent virus induction of the human IFN-β gene. Cell 71:777–789.
  • Thompson, J. F., and J. Landy 1988. Empirical estimation of protein-induced DNA bending angles: application to site-specific recombination complexes. Nucleic Acids Res. 16:9687–9705.
  • van Gent, D. C., K. Hiom, T. T. Paull, and J. Gellert 1997. Stimulation of V(D)J cleavage by high mobility group proteins. EMBO J. 16:2665–2670.
  • van Gent, D. C., J. F. McBlane, D. A. Ramsden, M. J. Sadofsky, J. E. Hesse, and J. Gellert 1995. Initiation of V(D)J recombination in a cell-free system. Cell 81:925–934.
  • van Gent, D. C., D. A. Ramsden, and J. Gellert 1996. The Rag-1 and Rag-2 proteins establish the 12/23 rule in V(D)J recombination. Cell 85:107–114.
  • Verbeek, S., D. Izon, F. Hofhuis, E. Robanus-Maandag, H. te Riele, M. van de Wetering, M. Oosterwegel, A. Wilson, H. R. MacDonald, and J. Clevers 1995. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374:70–74.
  • Villa, A., S. Santagata, F. Bozzi, S. Giliani, A. Frattini, L. Imberti, L. Benerini Gatta, H. D. Ochs, K. Schwarz, L. D. Notarangelo, P. Vezzoni, and J. Spanopoulou 1998. Partial V(D)J recombination activity leads to Omenn syndrome. Cell 93:885–896.
  • Weis-Garcia, F., E. Besmer, D. J. Sawchuk, W. Yu, Y. Hu, S. Cassard, M. C. Nussenweig, and J. Cortes 1997. V(D)J recombination: in vitro coding joint formation. Mol. Cell. Biol. 17:6379–6385.
  • West, R. B., and J. Lieber 1998. The RAG-HMG1 complex enforces the 12/23 rule of V(D)J recombination at the double-hairpin formation step. Mol. Cell. Biol. 18:6408–6415.
  • Wu, H. M., and J. Crothers 1984. The locus of sequence-directed and protein-induced bending. Nature 308:509–513.
  • Zappavigna, V., L. Falciola, M. Helmer Citterich, F. Mavilio, and J. Bianchi 1996. HMG1 interacts with HOX proteins and enhances their DNA binding and transcriptional activation. EMBO J. 15:4981–4991.
  • Zinkel, S. S., and J. Crothers 1987. DNA bend direction by phase sensitive detection. Nature 328:178–181.
  • Zwilling, S., H. Konig, and J. Wirth 1995. High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J. 14:1198–1208.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.